Making do with what we’ve got: Using PMTUD for a higher DNS responsiveness

Victor Boteanu, Hanieh Bagheri

February 8, 2013
Introduction

- Classic DNS:
 - Normally uses UDP
 - A few truncated responses \rightarrow TCP

- Emergence of EDNS0 and DNSSEC
 - Bigger responses: RRset + signature
 - Capability of using UDP for responses >512 bytes
 - Fragmentation instead of truncation
Fragmentation in IPv6

- only done on end-to-end hosts
- Path MTU Discovery (PMTUD)
 - finding the smallest MTU in the path
 - ICMPv6 Packet Too Big (PTB): MTU + the trimmed part of the original message
Research question

Would it be feasible to utilize ICMPv6 PTB messages to increase a name server response deliverability?

What strategies can be applied and what effects and risks would they have?
Previous Research

- Maikel de Boer and Jeffrey Bosma:
 - IPv6 path MTU black hole discovery

- Gijs van den Broek et. al.:
 - Monitoring real-world resolvers dealing with fragmented DNS responses
 - Two server-side solutions to prevent fragmentation
Motivation

- Fact 1: About 10% of firewalls filter IPv6 fragments
 - Send responses with the min size guaranteed by all the routers: 1232 bytes
- Fact 2: ICMPv6 PTB message: original message contains (besides headers) the trimmed response
- Fact 3: Name servers are not aware of the PTB messages
 - DNS responses may become lost without informing the name server
Our idea:
- Ability to handle the failed responses due to their big size
- Send larger responses than 1232, but still less than 1452

Expected Result:
- Decrease number of fragments
- Increase the responsiveness of name servers
Proposed solution 1

- Simply send the response again to the client and set the TC flag
- The client should send the query again using TCP
- Implications:
 - Prevents DNS ID hacking
Proposed solutions 2 and 3

- Solution 2 - Use the PTB message payload to resubmit query to the name server
- Solution 3 - Use the PTB message payload to create shorter answers
 - for example omitting the ADDITIONAL section
 - making correction to decrease the value of the EDNS0 option
- Implications:
 - With both solutions, we circumvent ICMPv6 PTB spoofing
Setup and resources

- NSD 3.2.14 running on NLNOG RING node
- IPv6 only, no filtering
- RIPE Atlas probes (only IPv6)
- Packet captures provided by SURFnet
- DNS traffic provided by SIDN
Setup and resources
Setup and resources
Number of IPv6 ready probes - around 850
Available for our experiment - 442
TXT record >1500 bytes (1560 response size)
MTU on Ring-server interface set to 1280
Query TXT record from all Atlas probes
Results and observations

Probe PMTU

<table>
<thead>
<tr>
<th>PMTU</th>
<th>Number of Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1480</td>
<td>0</td>
</tr>
<tr>
<td>1280</td>
<td>1</td>
</tr>
<tr>
<td>1492</td>
<td>2</td>
</tr>
<tr>
<td>1472</td>
<td>3</td>
</tr>
<tr>
<td>1476</td>
<td>4</td>
</tr>
<tr>
<td>1460</td>
<td>5</td>
</tr>
<tr>
<td>1456</td>
<td>6</td>
</tr>
<tr>
<td>1468</td>
<td>7</td>
</tr>
<tr>
<td>1464</td>
<td>8</td>
</tr>
<tr>
<td>1454</td>
<td>9</td>
</tr>
<tr>
<td>1450</td>
<td>10</td>
</tr>
<tr>
<td>1440</td>
<td>11</td>
</tr>
<tr>
<td>1434</td>
<td>12</td>
</tr>
<tr>
<td>1390</td>
<td>13</td>
</tr>
<tr>
<td>1380</td>
<td>14</td>
</tr>
</tbody>
</table>
Results and observations

SIDN response sizes (DNSSEC IPv6 only)

Capture time of 2h

<table>
<thead>
<tr>
<th>Sizes</th>
<th>Number of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>\leq 1232 bytes</td>
<td>99.66%</td>
</tr>
<tr>
<td>(1232, 1452] bytes</td>
<td>0.002%</td>
</tr>
<tr>
<td>>1452 bytes</td>
<td>0.32%</td>
</tr>
</tbody>
</table>
Results and observations

SURFnet response sizes (IPv6)

Capture time of 1h on 7 name servers

<table>
<thead>
<tr>
<th>Sizes</th>
<th>Number of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td><1232 bytes</td>
<td>97.77%</td>
</tr>
<tr>
<td>(1232,1452] bytes</td>
<td>2.14%</td>
</tr>
<tr>
<td>>1452 bytes</td>
<td>0.07%</td>
</tr>
</tbody>
</table>
Results and observations

Atlas probe experiment - PTB and Fragment Reassembly messages

- 34 probes sent back Fragment reassembly messages
- 1 probe sent back PTB message despite MTU of server set to 1280
- This probe only accepted messages of at most 1232 bytes
SIDN and SURFnet - ICMPv6 messages

<table>
<thead>
<tr>
<th>Type of message</th>
<th>SIDN</th>
<th>SURFnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Exceeded Fragment Reassembly</td>
<td>333 (8.1%)</td>
<td>26 (0.06%)</td>
</tr>
<tr>
<td>Packet Too Big</td>
<td>43 (1%)</td>
<td>16 (0.03%)</td>
</tr>
<tr>
<td>Administratively prohibited</td>
<td>7991</td>
<td>3624 (8.1%)</td>
</tr>
</tbody>
</table>

*out of response sizes >1232 bytes
427 unique sources

query TXT record

Raw socket intercepting packets

handled 56 problematic sources

only 5 probes still sent back Fragment Reassembly
Conclusions

- DNSSEC gaining in popularity
- Responses will grow in size
- Firewalls are still configured to filter fragments
- ICMPv6 messages are not used their full potential
Questions