
University of Amsterdam
Faculty of Physics, Mathematics and Informatics

MSc System and Network Engineering

Research Project 2

Collecting, cataloguing and searching performance
information of Cloud resources.

February 17, 2017

Author: Supervisors:
Olaf Elzinga dr. ir. Arie Taal

dr. Zhiming Zhao

Abstract

When deploying an application in the cloud, a developer often wants to know which of the
wide variety of cloud resources is best to use. Most cloud providers only provide static infor-
mation about different cloud resources which is often not enough because static information
does not take into account the hardware and software that is being used or the policy that
has been applied by the cloud provider. Therefore, dynamic benchmarking of cloud resources
is needed to find out how a certain workload load is going to behave on a certain instance.
However, benchmarking various cloud resources is a time consuming process. Thus, using a
tool which automatically benchmarks various cloud resources will be of great use. To maximize
the effectiveness of such a tool, it will be helpful to maintain an up to date cloud information
catalogue, so that users can share and compare their benchmark results to the results of other
users. In this paper we present the Cloud Performance Collector, a modular cloud benchmark-
ing tool aimed to automatically benchmark a wide variety of applications. To demonstrate the
benefit of the tool we did three experiments with three synthetic benchmark applications and
one real-world application using the ExoGENI testbed. During the experiments we focused on
measuring variation in performance when a new VM is provisioned and when the same VM is
used over a longer period of time. We found out that most ExoGENI instances perform very
stable over time, however there can be some difference in performance when a new VM instance
is provisioned.

CONTENTS

Contents

1 Introduction 2

2 State of the art review 3
2.1 Tool requirements . 3
2.2 Automated benchmark tools proposed in literature 4
2.3 Technical gaps . 5

3 Cloud Performance Collector 6
3.1 System overview . 6
3.2 Cloud Performance Collector inner workings . 6
3.3 Prototype . 7

4 Experiments and results 8
4.1 Experimental setup . 8
4.2 Benchmark applications . 9
4.3 Experiment 1: Performance variation of different VM instances 10
4.4 Experiment 2: Performance variation of a single VM instance over time 12
4.5 Comparing the first two experiments . 14
4.6 Experiment 3: Performance variation of a real-world application 15

5 Discussion 16
5.1 Experiments . 16
5.2 High disk performances . 17
5.3 ExoGENI issues . 17

6 Conclusion and future work 18

7 Appendices 22

A Experiments 22

1

Introduction

1 Introduction

Over the last decade, the usage of cloud computing is becoming increasingly popular. With the
increasing amount of available instances and cloud providers it is becoming increasingly difficult
for application developers to select the right cloud provider for their application. Most cloud
providers provide static information (e.g. CPU cores, memory size, disk size, and disk type) of
different kinds of virtual machines (VMs). However, when an application developer wants to
deploy a mission-critical application in the cloud, the static information provided by the cloud
provider is often insufficient, because static information does not take into account the hardware
and software that is being used or the policy that has been applied by the cloud provider.
Therefore, more precise information about cloud resource types and provisioning constraints is
crucial to successfully deploy an application within the cloud. To help cloud customers find
precise information about cloud resources, automated benchmarking tools would be of great use.
Over the last few years many automated benchmark tools are proposed in literature, including
[4, 7, 21, 18, 9, 12]. All proposed tools aim to help a single user to benchmark multiple
instances and/or providers, so that the user is able to select the right instance according to
their requirements. However, the performance of those instances may be different each time
it is measured [8, 14]. Thus, it would be helpful if users can share their benchmark results
and compare them with results of other users to get a better understanding of variation in
performance.

In this paper we will look at how to test a given application component of cloud resources to
maintain a cloud catalogue. By using the cloud information catalogue it would be possible for
users to share and compare the results with the community.

The main research question is: ’How to test a given application component of cloud resources
to maintain a cloud catalogue of dynamic cloud performance information? ’

• What are the existing methods for obtaining cloud resource performance information?

• How to benchmark any given application component in an easy way?

The outline of this paper is as follows. In section 2, we will review the state of the art for cloud
performance collecting. Next, in section 3 we discuss the proposed Cloud Performance Cata-
logue. In section 4, we describes the experimental setup and give the results of the experiments.
In section 5 the results of the experiments are discussed. Lastly, section 6 concludes the paper
and offers avenues for future research.

2

State of the art review

2 State of the art review

In this section, we first specify the most important requirements for a tool that automatically
collects cloud performance information which can be used to maintain a cloud catalogue. After
that, we specify the requirement for reviewing automatic cloud benchmark tools proposed in
literature. Where after, we decide if we are going to use an existing automatic cloud benchmark
tool or build our own tool to answer the main research question.

2.1 Tool requirements

Out of the research questions and challenges described in section 1 we can enumerate several
functional requirements:

1. Custom benchmarking: implementing new and custom benchmarks is an important
feature of the tool. By using a well-defined way of specifying which application needs to be
installed, configured and executed, it should be easy to implement any type of application
to benchmark it on different cloud resources/providers.

2. Scheduling benchmarks: besides that it must be possible to directly execute a bench-
mark, it also must be possible to schedule benchmarks in order to do long-term analyses
of cloud resources.

3. Catalogue results: The results of each benchmark that is collected must be stored into
a cloud information catalogue.

4. Searching and comparing results: to make full use of the potential of the cloud
information catalogue, it must be easy to search and compare information inside the
catalogue. Both searching and comparing information can be done by either human
(web-interface) or machines (API). The two different types of actor both have different
ways of interacting with the catalogue to gain their need of information.

The requirements for selecting an automatic benchmark tool proposed in literature are:

1. Publicly available: most importantly, the application must be publicly available for
usage.

2. Open-source: in order to make the community contribute to the tool as well, the appli-
cation must be open-source. When applications are open-source and downloadable via for
example Github, it helps to get the community involved with the project. The community
can report bugs and make suggestions for new features which helps the applications stay
secure and remain relevant.

3. Maintainability: an important aspect of the application is that it must be maintained
frequently. The cloud evolves rapidly and new features are presented regularly and there-
fore it is important that the automated benchmark tools follow the new trends of the
cloud and keep helping customers to select the right cloud resources.

4. Support for IaaS providers: in many cases users will compare multiple providers to
select the best offer according to their wishes. Therefore, the application must support a

3

2.2 Automated benchmark tools proposed in literature

large amount of public and private IaaS providers. Without supporting a large amount
of public IaaS providers, users will not see the relevance of the tool.

2.2 Automated benchmark tools proposed in literature

Over the last few years there are several automated cloud benchmarking tools proposed in
literature.

Chhetri et al. [4] proposed the Smart CloudBench, which is a platform that automates the
performance benchmarking of cloud infrastructure, helping potential consumers quickly identify
the cloud providers that can deliver the most appropriate price/performance levels to meet
their specific requirements. They looked at benchmarking from the consumer’s perspective
and focused on benchmarking the entire application stack instead of looking at individual
components (e.g. CPU, RAM, Disk or Network performance).

In 2013, Cunha et al. [6, 7] proposed an automatic benchmark tool called the Cloud Crawler.
The tool helps users to describe and automatically execute application performance test in-
side the cloud. New benchmarks are defined in a declarative domain-specific language called
Crawl, which is based on YAML. The benchmarks defined by Crawl are executed through the
execution engine called Crawler, which is responsible for automatically configuring executing
and collecting the results of each evolution. To test the benefits of Cloud Crawler the authors
did an experimental evaluation of social network applications in Amazon EC2 and Rackspace
with different VM configurations and under different demand levels. An old version of Cloud
Crawler is available on Github [5].

In 2014, the authors of [18, 19] presented the Cloud WorkBench (CWB), a concrete implemen-
tation of a cloud benchmarking Web services. CWB was designed and implemented to leverage
the notion of IaC for cloud benchmarking, and is used to automate the benchmarking lifecycle
from the definition to the execution of benchmarks[19]. CWB uses Vagrant to provision vir-
tual resources and Opscode Chef to install and configure the benchmark tools. CWB can run
benchmarks directly or schedule benchmarks within various public Infrastructure as a Service
(IaaS) clouds. The latest version of Cloud Crawler can be downloaded from Github [17] and is
licensed under the Apache License Version 2.0 (APLv2) [17].

Jayasinghe et al.[9] proposed Expertus, which is a flexible code generation framework for auto-
mated performance testing of distrusted applications in IaaS clouds. Expertus uses XML and
XSLT templates for new benchmarks.

In 2013, Silva et al. presented the CloudBench [21]. CloudBench is an open-source framework
that automates IaaS clouds to run controlled experiments, where complex applications are au-
tomatically deployed. The authors demonstrated CloudBench main characteristic trough the
evaluation of an OpenStack installation, including experiments with approximately 1200 simul-
taneous VMs at an arrival rate of up to 400 VMs/hour [21]. CloudBench can be downloaded
from Github [20] and is licensed under the Apache License Version 2.0 (APLv2) [20].

In 2015, Kratzke et al. [12] proposed EasyCompare. EasyCompare is not about selecting the
best cloud provider but it is about selecting the most similar resource provided by different
cloud providers. EasyCompare uses Euclidian distance measure to compare the different cloud

4

2.3 Technical gaps

resources. To demonstrate EasyCompare, the authors evaluated the resources of two major
public cloud providers namely Amazon EC2 and Google Compute Engine.

Table 1: Comparison of proposed automated benchmark tools and our requirements

Publicly
available

Open source Custom bench-
marks

Schedule Provider support Catalogue
result

Cloud WorkBench Yes Yes (Apache 2.0) Yes Yes Only public No
Cloud Crawler Yes Yes Yes No Only public No
CloudBench Yes Yes (Apache 2.0) No No Public and private No
EasyCompare No - No No Only public No
Expertus No - Yes No Only public No
Smart CloudBench No - No Yes Only public No

2.3 Technical gaps

Table 1 compares the most important requirements (see section 2.1) of the tools proposed
in literature described in the last section. None of the tools proposed in literature met our
requirements, therefore we decided to create our own tool during this research. We identify a
number of technical gaps that we try to bridge in this research:

1. Catalogue the collected results: None of the tools proposed in literature have the
ability to be used with a cloud catalogue. Most related work focuses on collecting perfor-
mance information and are using the collected data for performance evaluation research
without looking at the possibility to catalogue the collected results to make it possible to
share and compare data of others using that tool.

2. Ability to add providers: None of the tools have the ability to easily add providers
to the tool. For example, the Cloud WorkBench uses Vagrant, which works well for the
platforms Vagrant supports. However, when a provider is not supported by Vagrant one
has to find an other way to add that provider. It would be helpful if a new provider could
be implemented regardless of the type of software used to do so. Therefore, a well defined
framework will be of great use to define a standard way of writing such a piece of code
that controls the orchestration VMs.

3. Possibility to add custom benchmarks: Most of the tools proposed in literature do
not provide a way to add custom benchmarks in an easy way. Therefore, it’s important
that the installation, configuration and the benchmarking process are defined in a pow-
erful way and in a common language (e.g. JSON, YAML) so that it’s easy for users to
benchmark their scenario.

5

Cloud Performance Collector

3 Cloud Performance Collector

In this section we will discuss the architecture of the Cloud Performance Collector (CPC). The
relation between the CPC and user/cloud catalogue. After which, we will discuss how the CPC
works and discuss the prototype we build.

3.1 System overview

Figure 1 illustrates the process of collecting, cataloguing and searching performance information
of Cloud resources. Collecting the performance information is done by the CPC. Via the CPC,
users can directly run or schedule benchmarks. When a benchmark is executed, the CPC will
take care of the whole process; the CPC will provision the VM, install and configure the neces-
sary software, run all the benchmarks and collect the results. When all benchmarks are finished,
the VM will be released and the results will be catalogued inside the Cloud Catalogue.

To make it easy for developers to implement new features, the design includes three modules:
the provider module, the deploy and run module, and the result module. The provider module
makes it possible to provision and release VMs when the experiments are finished. The deploy
and run module takes care of installing, configuring, and executing the benchmarks. The
results module modules parses all the useful information out of the output of each benchmark
application.

Figure 1: Architecture of the cloud catalogue

3.2 Cloud Performance Collector inner workings

The steps involved in the data collection process are shown in the sequence diagram in figure 2.
In the first step, the experimenter (user) runs or schedules one or more benchmark scenarios.
When a scenario is executed, the CPC will first provision the necessary resource via the cloud

6

3.3 Prototype

Application Programming Interface (API). As soon as the VM instance is reachable, the software
can be installed and configured depending on the layout of the scenario. After the successful
installation/configuration of the software, the benchmarks can be executed. When a benchmark
is finished, the results will be collected by the CPC. After all benchmarks are finished and all
the results are collected, the CPC will release the VM to keep the time the VM is used to a
minimum.

Figure 2: The CPC benchmark execution process

3.3 Prototype

To demonstrate the benefit of the design we build a prototype to do experiments with. The
prototype is a command-line interface (CLI) tool written in bash. During the experiments
ExoGENI will be used as provider, therefore the provider module will make use of the python
script omni 1 to communicate with the API of ExoGENI. The deploy and run module which
takes care of installing, configuring and executing the benchmarks will be done via Ansible 2.
Ansible is an open-source configuration management tool which uses SSH push commands to
install, configure and run the necessary benchmarks. The scheduling of benchmarks is done via
Linux cronjobs. The results module consists out of small bash scripts to filter the output and
the catalogue function of the application will not be used during the experiments.

1http://trac.gpolab.bbn.com/gcf/wiki/Omni
2https://www.ansible.com/

7

http://trac.gpolab.bbn.com/gcf/wiki/Omni
https://www.ansible.com/

Experiments and results

4 Experiments and results

In order to illustrate the benefits of the CPC we conduct several experiments using the ExoGENI
[3] testbed. ExoGENI is, in effect, a widely distributed networked infrastructure-as-a-service
(NIaaS) platform geared towards experimentation and computational tasks [3].

During these experiments we aim to answer three questions:

• Will VM instances with the same specifications and image from the same provider give
similar performance?

• Will the same VM instance with the same workload provide a constant level of performance
over time?

• Will a given application component perform the same compared to the synthetic bench-
marks?

The goal of the first question is to measure if there is a difference between different provisioned
VMs, using the same specifications and image from the same provider.
The goal of the second question is, to find out whether a VM instance once provisioned performs
constantly over a longer period of time. By comparing the results of the first question with the
results of the second question we can analyze whether the performance variation is depending
on the time of the day or the physical location of the VM instance or both.
The goal of the third and last question is to find out whether the results of the first two questions
help to predict the performance of a real-world application. By using a real-world application,
we can demonstrate how the CPC can test any given application component.

During the experiments we keep in mind that users are bound to certain time constraints,
therefore the whole process from provision an instance until the release of an instance must be
within one hour.

4.1 Experimental setup

All experiments were conducted on the ExoGENI testbed using the racks of: The National
ICT Australia (NICTA), Raytheon BBN Technologies (BBN), and the University of Amster-
dam (UvA). The experiments are conducted on the "current types" offered by ExoGENI [1].
During the experiments we will use three different instance types: XOMedium, XOLarge, and
XOXLarge. Table 2 shows the specification of the current resource types offered by ExoGENI.
All instances are using the same Ubuntu 14.04 image.

Table 2: Resource types offered by ExoGENI [1]

Resource Type Resource Name Cores RAM Disk(s)

VM XOMedium 1 3G 25G
VM XOLarge 2 6G 50G
VM XOXLarge 4 12G 75G

8

4.2 Benchmark applications

4.2 Benchmark applications

During the experiments four applications are used, three synthetic benchmark tools, and one
real-world application.

Sysbench [10] is a modular, cross-platform and multi-threaded benchmark tool to quickly get
an impression about system performance. During our experiments we use sysbench to do a
primality test on 100,000 natural numbers. Sysbench measures the time it takes to calculate
those number in seconds. Since sysbench is a multi-threaded benchmark tool, we set the –num-
threads to the n-thread available on that particular instance. We will use the standard version
of sysbench available in the Ubuntu repository without special tuning.

The STREAM [15] benchmark is used to measure the performance of the main memory.
STREAM is a synthetic benchmark which is designed to measure sustainable memory band-
width using four vector-based operations:

1. COPY a = b
2. SCALE a = q ∗ b
3. SUM a = b+ c
4. TRIAD a = b+ q ∗ c

During our experiments the TRIAD operation is used. We will use the standard version of
STREAM available in the phoronix test suite [13] without special tuning. The phoronix test
suite is installed via the default Ubuntu repository.

IOzone [16] is a benchmark used to measure the read and write performance of the disk. To
reduce the time it takes to complete both the read and write process, we make use of a file size
of 2GB with a record size of 64Kb. We will use the standard version of IOzone available in the
phoronix test suite [13] without special tuning.

To demonstrate that any type of application could be tested, we will use the application
Montage[2] inside a Docker container. Montage is a toolkit for assembling Flexible Image
Transport System (FITS) images into custom mosaics. We will use the dockerfile [11] to build
and run Docker container.

Table 3 shows the metrics of all application used during the experiments.

Table 3: Application used during the experiments

Component Application Metrics

CPU Sysbench Duration (sec)
Memory STREAM Throughput MB/s
Disk IOzone Throughput MB/s
Application Montage Duration (sec)

9

4.3 Experiment 1: Performance variation of different VM instances

4.3 Experiment 1: Performance variation of different VM instances

During the first experiment we will try to find out if VM instances with the same specifications
and image from the same provider gives similar performance. During these experiment we will
use a different VM instance every two measurements. By benchmarking the same instance twice
before a new one is used we can see if the variation is caused by the fact that the instance is
placed on a different physical server or by noisy neighbours.

4.3.1 CPU

Figure 3 shows the results of running the sysbench CPU benchmark. The instance running
on the rack of NICTA are performing quite stable and have little to no performance variation
when a different instance is used. In contrast to the instance running on the rack of NICTA, we
have measured different performances when a new instance is provisioned on the rack of BBN.
However, when we run the same benchmark for the second time on the same VM instance, we
see a similar level of performance. Because the second measurement on the instances of the
BBN rack show similar performance compared to the first measurement on that instance. It is
likely that the instance is placed on a different physical server within the rack.

Figure 3: Variation in performance of different VM instances running sysbench

After ten measurements it was not possible to provision the BBN XL instances again. Therefore,
during this experiment the data available of the BBN XL instance is limited. Similar problems
occurred on provisioning instances on the rack of the UvA. Therefore, we decided to not include
the instance of the UvA during this experiment.

4.3.2 Memory

Figure 4 shows the memory throughput measured by STREAM. In general, the results are
comparable with the results of the CPU benchmarks with a couple of interesting differences. The
Large and XL instance of NICTA show slightly decrease in performance in some measurements.
The instance on BBN show the similar pattern compared to the CPU benchmark. Interesting

10

4.3 Experiment 1: Performance variation of different VM instances

is that during a measurement during which the memory throughput is higher, the time it takes
for sysbench to finish is longer. For example, the first four measurements on both the NICTA
Medium and the BBN Medium instance show more or less the same result. During the fifth
measurement of the BBN Medium instance, we see an increase in execution time during the
CPU benchmark but also an increase in memory throughput.

Figure 4: Variation in performance of different VM instances running STREAM

(a) Read (b) Write

Figure 5: Variation in performance of different VM instances running IOzone

4.3.3 Disk I/O

The performance disk I/O has the tendency to vary more compared to CPU and memory. Dur-
ing this experiment we can see this behaviour as well. Figure 5a shows the read performance

11

4.4 Experiment 2: Performance variation of a single VM instance over time

of the different instances, all instance perform similar, whereas the instances of BBN perform
slightly higher. The write performance is shown in figure 5b. Compared to the read perfor-
mance, the larger instance tends to perform a little bit better compared to the smaller instances.
Interesting is that the BBN Medium instance shows a big variation in performance.

4.3.4 Provision and Benchmark time

Table 4 shows the minimal, maximum, standard deviation (SD), average, and relative standard
deviation (RSD) of the time to provision and duration of the benchmarks of all instances during
this experiment. For both provisioning and running the benchmarks, the instance on BBN were
quicker. The shortest benchmark time measured was 07:02 minutes (BBN XL) and the longest
benchmark time was 33:02 minutes (NICTA Medium). With regards to provision time, it took
the least time for the BBN Medium instance (01:38 minutes) and the most time for the NICTA
Large instance (9:59 minutes).

Table 4: Provision time and benchmark duration (in seconds) of experiment 1

Instance Provision time Benchmark time
min max SD Avg RSD min max SD avg RSD

Nicta M 130 1190 289 279 104% 1110 1982 227 1295 17.51%
BBN M 98 204 30 126 24% 716 1748 262 1055 24.85%
Nicta L 161 1199 290 284 102% 630 1746 286 919 31.17%
BBN L 100 166 25 124 20% 653 1387 190 815 23.33%
Nicta XL 172 462 78 238 33% 529 1721 263 733 35.93%
BBN XL 120 204 36 164 22% 422 951 155 607 25.64%

4.4 Experiment 2: Performance variation of a single VM instance over
time

During the second experiment we will try to find out if the same VM instance with the same
workload provide a constant level of performance over time. During the start of this experiment
we will provision a VM instance for each provider/resource type and we will use that same VM
instance for all measurement.

4.4.1 CPU

Figure 6a shows the results of running the sysbench CPU benchmark. All the measured in-
stances show almost no variance in performance. The Large instance of all three racks perform
on the same level. However, the Medium and XL instance of BBN performed less compared to
the same instance of the other racks.

12

4.4 Experiment 2: Performance variation of a single VM instance over time

(a) Sysbench (b) STREAM

Figure 6: Variation in performance on the same VM instance running sysbench and STREAM

4.4.2 Memory

Figure 6b shows the variety in performance. Where as, the results CPU shows almost no
variation in performance, the results of the memory show some small differences. The BBN
Large instance shows significant difference and the NICTA Large and NICTA XL show some
difference as well.

4.4.3 Disk I/O

The results of the disk I/O are similar to the first experiment. Still there is a lot of performance
variation measured on all instances. However, the performance variation on some instances
seem to be less compared to the first experiment.

Figure 5a shows the read performance of the different instances. In almost all cases (except
for UvA Large) the instance running on the UvA have the highest performance followed by
BBN. A possible explanation for the results of the UvA Large instance is the fact that the
UvA rack is heavily used (which resulted in provisioning problems during the first experiment).
Figure 5b shows the write performance of the different instances. In general, the larger instance
tends to perform a little bit better compared to the smaller ones. Just like the first experiment,
the write throughput of the BBN Medium is much higher compared to the write throughput
of the other instances. However, this time the variation is much lower than during the first
experiment.

13

4.5 Comparing the first two experiments

(a) Read (b) Write

Figure 7: Variation in performance on the same VM instance running IOzone

4.4.4 Benchmark duration

Table 5 shows the minimal, maximum, SD, average, and RSD of the benchmark duration of all
instances during this experiment. The fasted measurement was 05:22 minutes (UvA XL) and
the slowest measurement 26:28 (NICTA Medium).

Table 5: Benchmark duration (in seconds) of experiment 2

Instance min max SD Avg RSD

Nicta M 1177 1588 94 1277 7%
BBN M 727 891 39 763 5%
UvA M 860 982 44 926 5%
Nicta L 634 1458 150 1001 15%
BBN L 670 782 31 727 4%
UvA L 560 714 44 624 7%

Nicta XL 599 1450 222 945 23%
BBN XL 409 609 56 484 12%
UvA XL 322 524 60 416 14%

4.5 Comparing the first two experiments

To get a better understanding of performance variation of the first and second experiments we
will compare the results of both experiments. In appendix A four tables can be found which
compares the SD, average, and RSD of the first experiment with the SD, average, and RSD of
the second experiment.

In table 6, the CPU results of both experiments are compared. With regards to the instance of

14

4.6 Experiment 3: Performance variation of a real-world application

NICTA, we can see that the RSD of first experiment is higher but relatively close the RSD of
the second experiment. In contrast with the instances on BBN, the RSD of the first experiment
is much higher compared to the second experiments.

In table 7 the memory benchmark results of both experiments are compared. The RSD of
both experiment on the instances running on NICTA are almost similar, except for the NICTA
Medium instance which is slightly lower (0.11%). Similar to the results of the CPU benchmarks,
the RSD of the first experiment is much higher compared to the second experiment.

Table 8 and table 9 compare the results of both experiments with regarding to disk I/O. We
witnessed that during the comparison of the CPU and memory results, the RSD of the first
experiment is almost always higher or equal to the RSD of the second experiment. However,
this is not the case for the disk I/O. In 58% of cases the RSD of the first experiment is higher
compared to the second experiment and in 42% of the cases the RSD of the first experiment is
lower compared to the second experiment.

4.6 Experiment 3: Performance variation of a real-world application

Figure 8 shows results for the Montage application running inside a Docker container. During
this experiment we used the same VM instance that is used during the second experiments.
Similar to the results of the other experiments, during this experiment we can see that all
instances show little performance variation over time. Interesting is that all medium instances
are performing similar or better compared to their same provider counterpart.

Figure 8: Results of running Montage inside a Docker container

15

Discussion

5 Discussion

In this section the experiments are discussed.

5.1 Experiments

Will VM instances with the same specifications and image from the same provider give similar
performance?

During our experiments we have seen that when a new VM instance is provisioned the perfor-
mance can be similar but in some cases can differ. Based on the first experiment we found out
that it depends on which ExoGENI rack is used. Our experiments show that NICTA provides
similar performance when a new VM instance is provisioned compared to previous provisioned
VMs. However, it was not the case for the BBN rack, were we have seen that the performance
can vary quite a bit, probably depending on which physical server it’s placed.

Will the same VM instance with the same workload provide a constant level of performance over
time?

We have seen that with regards of CPU and memory the performance provided by all tested
providers is constant over time. Although, during the memory benchmark the performance
variation of three out of the nine instances were higher compared to the other six. With regards
to the variation of disk performance we have seen that there is much more variation during
both experiments. We have seen that the read performance of the UvA Large instance was
significantly lower compared to all instances, a possible explanation for the low results is the
fact that the UvA rack is heavily used. However, to really understand why the performance
was significantly lower more testing is needed to identify if it has something to do with the VM
type or the physical server the VM is hosted on. However, this issue perfectly illustrates the
relevance of maintaining an up to date cloud catalogue to help users compare their results with
the results of others.

Will a given application component perform the same compared to the synthetic benchmarks?

The Montage application read a large amount of images from disk and created one big image
out of those images. Therefore, read performance is an important aspect of the application.
When we compare the results of this experiment with the result of disk read performance of
the second experiments, we can see that figure 7a and figure 8 have a lot of similarities. Both
figures show that the UvA is the fasted except for the UvA Large instance. Both figures show
that the Large instance of each rack is performing less compared the Medium and XL instance
of that rack. Hence, we can conclude that it should be possible to use synthetic benchmark to
show which instance is best for a specific application. However, it is important to understand
the most important components of the application to compare its results to various results of
synthetic benchmarks.

16

5.2 High disk performances

5.2 High disk performances

During the first two experiments we benchmarked the disk performance of various instances.
The performance measured during this experiment were extraordinary high, especially the read
throughput. An explanation for the extraordinary high result is the fact that we used a small
file size to reduce the benchmark time. To goal of the experiment was to benchmark various
components of a VM within a single hour, including provisioning, installing, configuring, and
releasing the VM. Hence, we could conclude that benchmarking multiple components within
an hour does not deliver reliable insight into the performance capability of storage devices. So
when one wants to measure the actual performance of the disk (and not the performance of any
form of caching available to the instance) it is recommendable to do longer benchmark which
automatically increase the costs of benchmarking multiple instances on multiple provider/re-
gions.

Kratzke et al. [12] measured comparable values with IOzone on GCE and AWS EC2. Kratzke
even used a smaller file size of 512 MB compared to the 2 GB used during our experiments.

With regards to the cloud performance catalogue, it is important to differentiate between bench-
mark parameters so that the results of short benchmarks are not compared with the results of
longer measurements.

5.3 ExoGENI issues

During the first experiment we encountered some problems with provisioning new VMs on
the rack of BBN and the UvA. On the BBN rack it occurred on the XL instance after ten
measurements, therefore we still used the data of those ten measurements. With regards to
the UvA instance, it was more problematic. It occurred on all three instance two times. The
first time we manually provisioned the VM stated benchmarking again. However, after the
second measurement the VM is released and a new VM provisioned and again we faced the
same problem. When we analysed the debug log file, we saw in all cases that the VMs were
successfully provisioned but none of those VMs were reachable afterwards. The next day, we
manually provisioned a VM again and found out that the rack did not have the resource to
successfully provision the VM (by using the commando: "python omni.py sliverstatus").

We also encountered issue with VMs that became suddenly unavailable. It happened on in-
stances running on the rack of the UvA, during the second experiment. Therefore, we had to
create a new slice because in the old one it was not possible to provision a new VM instance
for a certain amount of time.

17

Conclusion and future work

6 Conclusion and future work

In this paper we looked at how to test a given application component of cloud resources to main-
tain a cloud catalogue of dynamic cloud performance information. We first evaluated existing
methods for obtaining cloud resource performance information and found out that none of the
proposed cloud benchmark tools are designed to work with a cloud catalogue. To bridge the
gaps we found, we proposed the Cloud Performance Collector, a modular cloud benchmarking
tool aimed to automatically benchmark a wide variety of applications. To demonstrate the
benefit of the tool we did three experiments with three synthetic benchmark applications and
one real-world application using the ExoGENI testbed. During the experiments we found out
that some ExoGENI racks provide different performances depending on which physical server
the VM instance is placed. However, other racks provide more or less the same performance
when we provision a new VM with the same image and specifications. We have seen that once
a VM instance is provisioned the performance with regards to CPU and memory is quite stable,
however, with regards to disk I/O there is more variation in performance measured. We have
demonstrated the relevance of the CPC by benchmarking a containerized real-world applica-
tion which shows that larger instances with more resources does not always have to be the right
choice for your application.

The results of this research opens up several avenues for future research.

During this research we evaluated the performance of various components of a single VM. It
will be of great use to benchmark a single scenario for multiple VMs. Which can be basic
experiments to measure, for example, the network performance between several regions/racks
using an application like iperf. Or deploy real-world benchmark like measuring the amount of
live stream viewers an instance can handle and then conclude if it is better to use more small
instances or a couple of large instances.

We currently have used the CPC to evaluate the performance of ExoGENI. A logical step would
be to add the support for various public and private cloud providers to increase the possibilities
of the CPC. Furthermore, it would be interesting to add the support of not only traditional VM
instances (running on a hypervisor like Xen and KVM) but also container based IaaS instances
(running Docker) which are offered by big cloud providers like Amazon 3 and Google 4.

During this research we focused on collecting performance information of cloud resources to
maintain an up to date cloud catalogue. Research is needed on how the collected performance
information can be used to reliably inform users about the performance of certain instances.
Important is that the right performance information is compared to each other to give the user
reliable overview. For example, we saw during our experiment that the disk read throughput
was extremely high which was probably caused by raid-controller or RAM caching or by using
a small file size. Therefore, it is important to know which parameters (e.g. disk size, RAM
size, test file size, raid-controller cache size/speed) need to be used during the comparison, to
give reliable results. Furthermore, to increase the effectiveness of the cloud catalogue it would
be of great use to look into using weights to select which cloud instance fits best for a certain
application. For example, the requirement for application X is that it needs a lot of process
power, but it does not need disk I/O. Thus, one wants to focus their search on instance with

3https://aws.amazon.com/ecs/
4https://cloud.google.com/container-engine/

18

https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/

Conclusion and future work

process power and not on disk I/O. An interesting example of using weights to intelligently
rank cloud offers is proposed by Varghese et al. [22, 23].

19

REFERENCES

References

[1] Exogeni resource types. https://wiki.exogeni.net/doku.php?id=public:
experimenters:resource_types:start.

[2] Montage project. http://montage.ipac.caltech.edu/.

[3] Welcome to exogeni. http://www.exogeni.net/.

[4] Mohan Baruwal Chhetri, Sergei Chichin, Quoc Bao Vo, and Ryszard Kowalczyk. Smart
cloudbench–automated performance benchmarking of the cloud. In 2013 IEEE Sixth In-
ternational Conference on Cloud Computing, pages 414–421. IEEE, 2013.

[5] M. Cunha. crawler. https://github.com/mathcunha/crawler, 2016.

[6] M Cunha, NC Mendonça, and A Sampaio. Cloud crawler: a declarative performance eval-
uation environment for infrastructure-as-a-service clouds. Concurrency and Computation:
Practice and Experience, 29(1), 2017.

[7] Matheus Cunha, Nabor C Mendonça, and Americo Sampaio. A declarative environment
for automatic performance evaluation in iaas clouds. IEEE CLOUD, 2013:285–292, 2013.

[8] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance variability of
production cloud services. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on, pages 104–113. IEEE, 2011.

[9] Deepal Jayasinghe, Galen Swint, Simon Malkowski, Jack Li, Qingyang Wang, Junhee Park,
and Calton Pu. Expertus: A generator approach to automate performance testing in iaas
clouds. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages
115–122. IEEE, 2012.

[10] Alexey Kopytov. Sysbench: a system performance benchmark. URL: http://sysbench.
sourceforge. net, 2004.

[11] S. Koulouzis. Montage dockerfile. https://github.com/skoulouzis/
dockerfiles/tree/master/Montage, 2017.

[12] Nane Kratzke and Peter-Christian Quint. About automatic benchmarking of iaas cloud
service providers for a world of container clusters. Journal of Cloud Computing Research,
1(1):16–34, 2015.

[13] Michael Larabel and M Tippett. Phoronix test suite. h ttp://www. phoronix-test-suite.
com, 2011.

[14] Philipp Leitner and Jürgen Cito. Patterns in the chaos—a study of performance variation
and predictability in public iaas clouds. ACM Transactions on Internet Technology (TOIT),
16(3):15, 2016.

[15] John D McCalpin. Stream benchmark. URL: http://www. cs. virginia.
edu/stream/stream2, 2002.

[16] William D Norcott and Don Capps. Iozone filesystem benchmark, 2003.

[17] J. Scheuner and P. Leitner. cloud-workbench. https://github.com/sealuzh/
cloud-workbench, 2014.

20

 https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start
 https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start
http://montage.ipac.caltech.edu/
http://www.exogeni.net/
https://github.com/mathcunha/crawler
https://github.com/skoulouzis/dockerfiles/tree/master/Montage
https://github.com/skoulouzis/dockerfiles/tree/master/Montage
https://github.com/sealuzh/cloud-workbench
https://github.com/sealuzh/cloud-workbench

REFERENCES

[18] Joel Scheuner, Jürgen Cito, Philipp Leitner, and Harald Gall. Cloud workbench: Bench-
marking iaas providers based on infrastructure-as-code. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pages 239–242. ACM, 2015.

[19] Joel Scheuner, Philipp Leitner, Jürgen Cito, and Harald Gall. Cloud work bench–
infrastructure-as-code based cloud benchmarking. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International Conference on, pages 246–253. IEEE,
2014.

[20] M. Silva and M. Hines. Cloud rapid experimentation and analysis toolkit. https://
github.com/ibmcb/cbtool, 2016.

[21] Marcio Silva, Michael R Hines, Diego Gallo, Qi Liu, Kyung Dong Ryu, and Dilma Da Silva.
Cloudbench: experiment automation for cloud environments. In Cloud Engineering (IC2E),
2013 IEEE International Conference on, pages 302–311. IEEE, 2013.

[22] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai, and Adam Barker. Cloud bench-
marking for performance. In Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, pages 535–540. IEEE, 2014.

[23] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai, and Adam Barker. Cloud bench-
marking for maximising performance of scientific applications. IEEE Transactions on Cloud
Computing, 2016.

21

https://github.com/ibmcb/cbtool
https://github.com/ibmcb/cbtool

Appendices

7 Appendices

A Experiments

Table 6: Comparing the results the experiment 1 and 2 (sysbench)

Instance Experiment 1 Experiment 2
Type SD Avg RSD SD Avg RSD
NICTA M 1.5 245.2 0.65% 0.16 245.11 0.07%
BBN M 19 272 7.31% 0.75 287.69 0.26%
UvA M - - - 0.50 241.80 0.21%
NICTA L 0.83 123.08 0.68% 0.77 122.75 0.63%
BBN L 8.3 125.3 6.68% 0.11 122.89 0.09%
UvA L - - - 0.35 122.49 0.29%
NICTA XL 0.29 61.37 0.47% 0.05 61.19 0.08%
BBN XL 7.8 71.3 10.98% 0.50 73.43 0.68%
UvA XL - - - 0.31 62.73 0.49%

Table 7: Comparing the results the experiment 1 and 2 (STREAM)

Instance Experiment 1 Experiment 2
Type SD Avg RSD SD Avg RSD
NICTA M 78 9851 0.79% 88 9821 0.90%
BBN M 1502 11907 12.62% 156 12805 1.22%
UvA M - - - 162 14569 1.12%
NICTA L 496 13501 3.68% 495 13499 3.67%
BBN L 2485 14357 17.31% 735 13346 5.51%
UvA L - - - 40 24816 0.16%
NICTA XL 469 14217 3.30% 469 14217 3.30%
BBN XL 7518 24298 30.94% 55 29706 0.19%
UvA XL - - - 59 29912 0.20%

22

Experiments

Table 8: Comparing the results the experiment 1 and 2 (IOzone read)

Instance Experiment 1 Experiment 2
Type SD Avg RSD SD Avg RSD
NICTA M 314 6556 4.80% 432 6495 6.66%
BBN M 327 6865 4.77% 118 6962 1.70%
UvA M - - - 426 7784 5.48%
NICTA L 505 6287 8.04% 140 6251 2.24%
BBN L 419 6584 6.38% 66 6605 1.01%
UvA L - - - 148 3516 4.22%
NICTA XL 305 6440 4.74% 183 6096 3.01%
BBN XL 363 6734 5.40% 407 6723 6.05%
UvA XL - - - 154 7653 2.01%

Table 9: Comparing the results the experiment 1 and 2 (IOzone write)

Instance Experiment 1 Experiment 2
Type SD Avg RSD SD Avg RSD
NICTA M 19 110 17.59% 17 115 15.16%
BBN M 323 358 90.39% 71 877 8.16%
UvA M - - - 16 186 8.66%
NICTA L 44 144 31.13% 43 124 35.06%
BBN L 54 192 28.28% 79 245 32.15%
UvA L - - - 30 161 18.98%
NICTA XL 94 266 35.54% 59 186 31.66%
BBN XL 57 306 18.83% 85 418 20.55%
UvA XL - - - 133 429 31.07%

23

	Introduction
	State of the art review
	Tool requirements
	Automated benchmark tools proposed in literature
	Technical gaps

	Cloud Performance Collector
	System overview
	Cloud Performance Collector inner workings
	Prototype

	Experiments and results
	Experimental setup
	Benchmark applications
	Experiment 1: Performance variation of different VM instances
	Experiment 2: Performance variation of a single VM instance over time
	Comparing the first two experiments
	Experiment 3: Performance variation of a real-world application

	Discussion
	Experiments
	High disk performances
	ExoGENI issues

	Conclusion and future work
	Appendices
	Experiments

