
BGP

Parallelization
A study into the BGP protocol as well as BGP implementations to

improve Route Server scalability.

Jenda Brands

Patrick de Niet

B Active BGP entries in FIB

From cidr-report.org

The internet is growing

Insert content in this area

• De-aggregation of prefixes

• Thus, more prefixes announced

• Currently 673,602 prefixes (03-07-17)

• More interconnections are made

More prefixes announced

NETWORKS

More routes to prefixes announced

ROUTES

2

I Internet Exchange

All nodes in the same layer-2 domain

Introduction to internet exchanges

 Flat fee from IX

 Negotiate peering terms with neighbours

Benefits of IX

IX

3

Internet Exchange (IX)

Enterprise

Content
Provider

Enterprise

Enterprise
Content
Provider

Enterprise

• Internet Exchanges reduce peering costs and administration

Costs of peering

PEERING

Introduction to route servers

Insert content in this area4

I Traditional BGP

Full-mesh peering

 21 Peerings in full-mesh required (N(N-1)/2)

 6 sessions per node

 Same layer 2 network

 Lot of administration/configuration for all peers

Without Route Server

BGP

Enterprise

Content
Provider

Enterprise

Enterprise

Enterprise
Content
Provider

Enterprise

5

I Current BGP

Peering with route server

 14 Peerings required (N2)

 2 sessions per node, each route server has 7

 Less administration/configuration needed for
peering

 Private peering possible

 Route Server reduces load on clients

 Maximum CPU usage on route server

 Aged routes on the clients

With route server

BGP

Convergence time

Problem

Introduction to route servers

Enterprise

Content
Provider

Enterprise

Enterprise

Enterprise
Content
Provider

Enterprise

Route
server

Route
server

6

Problem summary

Route servers are doing the heavy lifting and pushing BGP capabilities

As a result convergence times are increasing

The exact cause of this behaviour within BGP is unidentified

Research question

Insert content in this area7

What improvements can be made to the Border Gateway Protocol (BGP) or

its implementations to resolve current CPU bottlenecks when processing

updates?

 Why are current BGP implementations (inherently) single-threaded?

 What past work has been done to solve this specific issue?

 What optimizations can be done to resolve this issue?

General BGP architecture

Insert content in this area8

BGP specification (phase 1)

Insert content in this area9

I
Route server

Peer 1

Peer 2

Peer n

Peer 1

Peer 2

Peer n

Adj-RIB-In P1

Adj-RIB-In P2

Adj-RIB-In Pn

Loc-RIB

Adj-RIB-Out
P1

Adj-RIB-Out
P2

Adj-RIB-Out
Pn

IN-
POLICY

OUT-
POLICY

UPDATE

Best
Path
Calc.

Insert content in this area10

BGP specification (phase 2)
Route server

Peer 1

Peer 2

Peer n

Peer 1

Peer 2

Peer n

Adj-RIB-In P1

Adj-RIB-In P2

Adj-RIB-In Pn

Loc-RIB

Adj-RIB-Out
P1

Adj-RIB-Out
P2

Adj-RIB-Out
Pn

IN-
POLICY

OUT-
POLICYBest

Path
Calc.

11

BGP specification (phase 3)
Route server

Peer 1

Peer 2

Peer n

Peer 1

Peer 2

Peer n

Adj-RIB-In P1

Adj-RIB-In P2

Adj-RIB-In Pn

Loc-RIB

Adj-RIB-Out
P1

Adj-RIB-Out
P2

Adj-RIB-Out
Pn

IN-
POLICY

OUT-
POLICYBest

Path
Calc.

 Three peers

 One route server

 Simulate link-flap

 Many peers

 One route server

 Simulate link-flap

 Many peers

 One route server

 Overlapping prefixes

 Simulate link-flap

Testing scenarios

About our company info

THREE to ONE

SCENARIO 1

MANY to ONE

SCENARIO 2

REAL WORLD

SCENARIO 3

12

 Peer 1

 1.0.0.0/24

 1.0.1.0/24

 1.0.2.0/24

 Peer 2

 1.0.0.0/24

 1.0.1.0/24

 1.0.2.0/24

 Peer n

 1.0.0.0/24

 1.0.1.0/24

 1.0.2.0/24

 Peer 1

 1.0.0.0/24

 1.0.1.0/24

 1.0.2.0/24

 Peer 2

 1.0.3.0/24

 1.0.4.0/24

 1.0.5.0/24

 Peer n

 1.0.6.0/24

 1.0.7.0/24

 1.0.8.0/24

 Peer 1

 1.0.0.0/20

 1.0.16.0/20

 1.0.32.0/20

 Peer 2

 1.0.4.0/23

 1.0.6.0/23

 1.0.8.0/23

 Peer n

 1.0.5.0/24

 1.0.7.0/24

 1.0.8.0/24

Testing scenarios

About our company info

All peers SAME prefix

SAME

All peers UNIQUE prefix

UNIQUE

REAL WORLD

REAL-WORLD

13

 Intel(R) Xeon(R) CPU E3-1220L
V2 @ 2.30GHz (4 cores)

 7.7GB RAM

 BIRD BGP daemon

 Intel(R) Xeon(R) CPU L3426 @
1.87GHz (8 cores)

 7.7GB RAM

 Docker used for containers

 ExaBGP daemons

Testbed

About our company info

ONE route server

ROUTE SERVER

EIGHT servers for peers

PEER SERVERS

800 peers max

PEERS

14

 Either

 Got END-OF-RIB for last
peer

 Stops sending UPDATES

 Simulate flapping link

 Bring link to RS down

 CPU Utilization

 Memory Utilization

 Bandwidth

Definitions

About our company info

What defines CONVERGED
state

CONVERGENCE

All peers UNIQUE prefix

LINK FLAP

What was MEASURED

METRICS

15

Observations

Insert content in this area16

C Convergence time

Convergence time vs number of peers

Convergence times

RESULTS

 Lower numbers show lower convergence times

 Higher numbers show increasingly higher times

 10,000 prefixes with 800 peers significantly

higher

0

100

200

300

400

500

600

3 10 100 200 300 400 500 600 700 800

Ti
m

e
in

 s
ec

o
n

d
s

Number of peers

Convergence time

100 prefixes per peer 1,000 prefixes per peer 10,000 prefixes per peer

Observations

Insert content in this area17

E
Turning off export of routes

Phase 3

NO EXPORT

0

50

100

150

200

250

300

350

400

450

500

Ti
m

e
in

 s
ec

o
n

d
s

Export on/off

Convergence time

Export on

Export off

 Sending UPDATES disabled

 “export none”

 No significant difference

 Phase 3 (sending UPDATES) can not be the

issue

 Unable to conclusively rule out remaining

phases

 Snapshot of Adj-RIB-In

 Sorted on prefix

 Calculate hash on peer side

 With OPEN message send hash

 RS compares hash

 If hash is the same no need for full
UPDATE

 Load balance route servers

 Single endpoint for customers

 iBGP for internal convergence

 eBGP for peering

Solutions

About our company info

PROTOCOL improvements

PROTOCOL

IMPLEMENTATION improvements

IMPLEMENTATION

18

Protocol solution

Insert content in this area19

P Protocol modifications

Create prefix based RIB-In

PREFIX BASED

Route server

Peer 1

Peer 2

Peer n

Peer 1

Peer 2

Peer n

Peer

Adj-RIB-In P1

Peer

Adj-RIB-In P2

Peer

Adj-RIB-In Pn

Loc-RIB

Adj-RIB-Out
P1

Adj-RIB-Out
P2

Adj-RIB-Out
Pn

IN-
POLICY

OUT-
POLICY

Best
Path
Calc.

Prefix

Adj-RIB-In

Prefix

Adj-RIB-In

Prefix

Adj-RIB-In Pn

 Create table per prefix

 Add all paths to that prefix

 When starting Phase 2 calculation only lock

that specific RIB

Protocol solution

Insert content in this area20

P Protocol modifications

Compare hash before full UPDATE

HASHING

 Calculate hash of RIB on peer-side

 After link-flap send hash in OPEN message

 RS compares hashes, if match, no need for full

UPDATE

Calculate hash of
RIB-Out

Receive OPEN
message

End of Phase 3
Peer x

Send OPEN
message to Route

Server
(Incl hash)

Compare hash

Match?

Send NOTIFICATION
(request RIB)

No

Send NOTIFICATION
(not request RIB)

Yes

Peer x Route Server

Implementation solution

Insert content in this area21

L Load balancing

Customers do peering with load-balancer

eBGP

BEFORE LB

Content
Provider

Enterprise

Enterprise
Content
Provider

Enterprise

Load balancer

 Customers peer through load balancer

 Peer with route server behind load balancer

Implementation solution

Insert content in this area22

L Load balancing

Load-balancer balances between route servers IX

Load balancer

Route
server

Route
server

Route
server

Route
server

Route
server

iBGP

eBGP

 iBGP full mesh

 eBGP to load-balancer

iBGP

BEHIND LB

Narrow down the problem as much as possible

Good chances phase 1 is also not the issue

Set up a proof of concept of the proposed
hashing mechanism

1
Go through (open-source) code

Put timestamps, find delaying pieces of code

Narrow down bottleneck

Set up a proof of concept with load balancing

Measure convergence time gain

Find any caveats not identified yet

2

1

2

Future work

Insert content in this area

Rule out phase 1 Benchmarking of code

PoC of hashing mechanism PoC of load balancing

23

THANK YOU Any further
questions?

THANK YOU Any further
questions?

Let’s have a beer

