
MSc Security and Network Engineering

Research Project II

Low-level writing to NTFS file systems

Rick van Gorp
rick.vangorp@os3.nl

July 8, 2018

Supervisor:
Cedric van Bockhaven

Deloitte

Abstract

Red teams sometimes have to deal with files on NTFS drives that are
non-writable or endpoint security solutions that have on-access scanning
and application control features [12] [9]. These features could block writes
of data to the NTFS file system that may be required for red teams to com-
promise and control a system. An example of a case where non-writable
files are encountered is where an infrastructure has to be infiltrated silently
by creating a user account in a domain. The active directory database that
holds this information is locked and not accessible with administrative privi-
leges. Using write experiments, we have attempted to write to sections of an
NTFS volume. We found that writing to the NTFS boot sector is possible
with opening a handle to the volume using a user-mode application. Raw
write access to the disk is possible with a kernel-mode driver by directly
communicating with the storage class driver. Only one tested endpoint se-
curity solution was able to detect a program, that is used in the procedure of
loading the driver to disable driver signature enforcement, based on heuris-
tics. The writing method leads to limited bypassing of NTFS access lists
and bypassing real-time write protection features of endpoint security.

1

Contents

1 Introduction 3

2 Related work 4

3 Methods 5
3.1 Research environment . 5
3.2 Desk Research . 5
3.3 Static analysis . 6
3.4 Write experiments . 6

3.4.1 Experiments . 6
3.5 Verification . 6

4 Desk Research 7
4.1 Windows API . 7
4.2 Hooking . 8

4.2.1 User-mode hooking . 8
4.2.2 Kernel-mode hooking . 9

4.3 File system minifilter drivers . 10
4.3.1 Altitudes . 10
4.3.2 Filter manager . 11

4.4 File caching . 11
4.4.1 Removing a file from the system file cache 11

5 Experiment Results 13
5.1 Write experiments . 13

5.1.1 User-mode . 13
5.1.2 Kernel-mode . 14

5.2 Writing to files with raw disk access 15
5.2.1 Parsing the boot sector . 15
5.2.2 Parsing the Master File Table 16
5.2.3 Overwriting file data . 17

5.3 Bypassing Endpoint Security I/O hooks 17
5.3.1 Alternative unverified approach 18

6 Recommendations 20

7 Discussion 20

8 Conclusion 21

9 Future work 22

Appendix A IDA v7.0 Windows API analysis 26

Appendix B Import Address Table of kernel32.dll attached to pro-
cess Notepad 27

Appendix C NTFS write test results 27

2

1 Introduction

In a penetration testing assignment, red teams sometimes have to deal with files
on NTFS drives that are non-writable or endpoint security solutions that have
features such as on-access scanning and application control [12] [9]. The on-access
scanning feature enables security solutions to scan a file for malicious content when
it is written to the disk. The application control feature could limit applications
to write to specific regions of the disk. These features could block writes of
(malicious) data to the NTFS file system that may be required for red teams to
compromise and control a system. An example of a case where non-writable files
are encountered, would be where an infrastructure has to be infiltrated silently by
modifying the Active Directory Database on a domain controller, adding a new
domain administrator or user. This file is an example of a file that is locked and
is not accessible with administrator privileges.

Windows uses built-in Application Programming Interfaces (API) to allow a
program to interact with an NTFS file system [4][5]. ReadFile and WriteFile

are examples of Windows API calls that allow a program to read a file or write a
file respectively [6][7]. Those APIs call lower-level functions, eventually accessing
the hard drive through the kernel, file system driver and storage driver [27].

Endpoint security monitors activity on an endpoint to detect, block or report
malicious activity. It could for example hook into read and write API calls to
monitor or block input/output (I/O) operations. Another example is to use a file
system filter driver, which could be used for monitoring I/O operations and to
log and prevent execution of the calls [2][3].

In our research we will focus on methods to write data to NTFS drives on a low
level, bypassing hooks in read and write operations. Low level reading of data from
NTFS drives has been done by Joseph Bialek in his script Invoke-NinjaCopy [1].
Writing data to NTFS on a low level could result in evasion of software hooks in
windows read and write operations, evasion of the file system filter driver, evasion
of the Windows access lists or bypassing a file lock [1][8]. Evasion of software
hooks or evasion of the file system filter driver could lead to the possibility of
writing (malicious) data to an NTFS drive, without endpoint security reporting
this activity. Evasion of Windows access lists or bypassing a file lock could lead
to overwriting data that is currently in use or overwriting data the user has no
write permissions for.

This results in our main research question: In what way can data be written
to an NTFS file system, such that hooks in write operations within Windows are
bypassed?

3

2 Related work

Joseph Bialek describes in his script Invoke-NinjaCopy that by opening a read
handle to an NTFS volume and parsing the NTFS structure, reading files with
a file lock and bypassing Access List (ACL) read permissions is possible [1]. He
states that he does not use the Windows API, which causes the Windows ACLs
to be bypassed.

At the US Blackhat conference in 2016, Udi Yavo and Tomer Bitton described
different hooking engines and also identified security issues on the Windows hook-
ing methods, such as predictable R-X code stubs, which can be used to bypass
hooks [30].

Kuba Gretzky discusses how the AV-hook of Bitdefender worked in 2016 on
Breakdev.org [11]. When hooking into an API call the AV solution replaces the
first few bytes of the function with a jump instruction that redirects the execution
flow to its own hook handler. After handling the instruction, the original code
will be continued. Kuba Gretzky also describes an attack where the AV-hook can
be bypassed by calling the write code in ntdll.dll directly, by copying the code in
his own application and directly call the syscall related to the write instruction.
This only bypasses user-mode AV-protection.

In a blogpost of Cloudburst Security is described how shellcode in malware
actively bypasses system-wide AV hooks [26]. This is done by overwriting the five
byte function prolog of an API-call and replacing the return address with a push
instruction followed by a return instruction. This bypasses AV hooking code that
might reside in the first five bytes of the API-call. According to Kuba Gretzky
from Breakdev.org, malware sandboxes such as Cuckoo can detect this [11].

Virus Bulletin posted an article in 2008 about the Rustock.C botnet describing
the process of Rustock operating in user-mode to operating in kernel-mode by
using system drivers [23]. A driver could bypass file system filter drivers and
directly write to the NTFS volume using the IRP MJ WRITE IRP-request.

4

3 Methods

During this research we have set up a research environment, consisting of a phys-
ical machine for development and two virtual machines for testing. In order to
gather information regarding NTFS, hooking and the Windows API, desk research
and static analysis were performed. This is followed by write experiments to test
whether it is possible to write to specific regions of an NTFS volume. In the last
phase we tested what endpoint security solution does not detect the proposed
methods.

3.1 Research environment

The research was conducted on a machine running Windows 10 Home Edition
x64. A 64-bits edition was chosen as it also performs x86-x64 CPU instruction
translation if an x86 application is running. In order to perform driver-related
tests, two virtual machines were created running Windows 7 x64 in VMWare
Workstation and Virtualbox. The specifications of both machines are shown in
tables 1 and 2 respectively.

Operating system Windows 10 Home Edition - x64
CPU Intel Core i7-6700HQ @ 2.60GHz
Memory 16GB

Table 1: Specifications of Windows 10 machine

Operating system Windows 7 Home Edition - x64
CPU Intel Core i5-3570S @ 3.10GHz
Memory 3.5GB

Table 2: Specifications of Windows 7 machines

We have chosen to use Windows 7 and Windows 10, because, according to
Statcounter [28], those two Operating Systems are used the most from all available
Windows distributions. Windows 7’s market share was 39.44%, while Windows
10’s market share was 47.21% in May 2018 according to Statcounter. By choosing
the most used Windows distributions, the chances are higher the research will be
applicable to more systems worldwide.

3.2 Desk Research

Desk research was performed in several stages. In the first stage we gathered
information about writing files to NTFS drives in Windows and the Windows
API in general. Based on this information, we looked into ways to intercept,
modify and forward the write file functions in user-mode and kernel-mode. In
the second stage, more specific information was gathered based on the outcome
of the static analysis described in section 3.3 about writing to raw NTFS drives,
such as to what functions can be used to write to the disk. In the last stage
Invoke-Ninjacopy by Joe Bialek was analysed to determine how he parses and
approaches the NTFS drives. To define attack methods, more research was put
into the NTFS file system, the Windows driver stack and the File system filter
driver system.

5

3.3 Static analysis

In order to gather information about the read and write operations in Windows,
static analysis was performed on DLL-files and executables that are related to
Windows. This includes using Hex-Rays IDA v7.0 Free edition [13] to view the
DLL-files and executables in disassembly and resolve function calls. The appli-
cation is mainly used to discover what calls a write operation makes and gather
information about calling lower-level functions that write data to the hard disk.

3.4 Write experiments

Based on the information we found about the Windows API and Invoke-Ninjacopy,
we performed write experiments to the disk. These experiments included testing
in user- and kernel-mode to determine if it is possible to open a volume or a
physical drive and write directly to it. The experiments were performed on both
VirtualBox and VMWare virtual machines to validate the results are not influ-
enced by a vendor specific driver. It could be the case that VMWare or VirtualBox
provides different drivers to access the storage. Since we are looking for a generic
working writing methods, we wanted to verify whether it works for both types
of storage drivers. In order to perform these experiments, we have created a
user-mode application and a kernel-mode driver compatible with our Windows
7 machine that attempt different write operations to the disk and volume. The
locations where we attempted to write to were the NTFS boot sector, NTFS file
system space and the NTFS Master File Table. Based on the results we will
determine whether it is possible or not to write directly to an NTFS volume and
what software hooks are bypassed. The source codes used for the experiments
can be found on GitHub1.

3.4.1 Experiments

In experiment 1 we have built a user-mode driver and attempted to write to the
NTFS volume. This experiment is based on the approach Joseph Bialek has taken
with his script Invoke-Ninjacopy. Instead, we open a handle to the volume and
the hard disk using CreateFile from the Windows API and write to the opened
file handle using the WriteFile function.

In experiment 2 we have built a kernel-mode driver and attempted to write
to the NTFS volume. This experiment performs the same Windows API opera-
tions as performed in experiment 1, but uses calls that require kernel-permissions:
NtCreateFile and NtWriteFile.

In experiment 3 we have built a kernel-mode driver that is based on sectorio2

and a user-mode application that communicates with this kernel-mode driver to
write data directly to a sector on the disk. The kernel mode driver communicates
directly to the storage class driver using an IRP to perform the IRP MJ WRITE-
operation. Additionally the SL FORCE DIRECT WRITE flag was set to force direct
write access to the disk.

3.5 Verification

All found methods were checked whether they would work while an endpoint
security solution is running. During this phase we explicitly checked whether
endpoint security solutions were able to detect the methods and flag them as
malicious. If the methods are flagged as malicious and blocked, the endpoint
security solution is successful in preventing the methods from being executed.

1https://github.com/rickvg/low-level-ntfs
2https://github.com/jschicht/SectorIo

6

4 Desk Research

Desk research is divided into sections describing the results of desk research and
static analysis as described in section 3. This section mainly includes background
information that is required for interpreting the results of the experiments.

4.1 Windows API

In order to read or write files to the hard disk, Windows provides an API. A read
operation can be performed by calling ReadFile and a write operation can be
performed by calling WriteFile. In appendix A we show that if an application
in user-mode calls WriteFile from the Windows API, multiple calls are made in
user-mode and kernel-mode before the data is written to the hard disk. The user-
and kernel-mode calls are displayed in figure 1.

Figure 1: WriteFile related calls in user-mode and kernel-mode to the Hard Drive
per DLL-file or Executable on Windows 10 x64

If an x86 application calls WriteFile on an x64-system, KiFastSystemCall
in figure 1 is replaced with Wow64SystemServiceCall in order to translate the
x86-instructions to x64-instructions. Another requirement is that WriteFile uses
an open file handle, which could be created with API-call CreateFile.

A driver in kernel-mode is able to communicate directly with the file sys-
tem driver or storage driver by sending an Input/Output Request Packet (IRP)
through IofCallDriver. However, the Windows API follows the schedule de-
picted in figure 1 and an IRP is first forwarded to the file system driver. After pro-
cessing the IRP, the file system driver sends an IRP with function IRP MJ WRITE to
the storage class driver. This is an instruction for a write operation. The storage
class driver is for example responsible for processing storage related IRPs, trans-
lating them to SCSI Request Blocks (SRBs) and forwarding them to the storage
port driver corresponding to the given device object. Those SRBs are used to
communicate with the storage port drivers. In figure 2 we show the storage driver

7

stack, including the storage port drivers that communicate with specific types of
storage, such as SCSI, SAS, IDE or SATA.

Figure 2: Windows Storage Driver Architecture (Microsoft 20173)

In figure 2 is shown that the storage class driver sends SRBs to the storage port
drivers. This requires that the lower-filter drivers and storage port drivers must
be able to interpret SCSI-commands and, if necessary, translate the command to
a command compatible with IDE or SATA disks. In the figure, the upper-filter
drivers are attached to the storage class driver and are able to interpret IRPs,
while the lower-filter drivers must be able to interpret SCSI-commands.

4.2 Hooking

Hooking is a technique that is used to listen to or modify the behaviour of a
program by intercepting an instruction of a program. According to Matt Hilman
(2015), there are three hooking techniques that can be used in user-mode in
Windows [14]. This is earlier described by Sameer Patil (2014), in an article
where he describes user-mode and kernel-mode hooking techniques [22]. These
techniques are described in sections 4.2.1 and 4.2.2.

4.2.1 User-mode hooking

Three techniques for user-mode hooking are Dynamic-Link Library injection (DLL),
Import Address Table (IAT) hooking and inline hooking.

DLL-injection is used to provide hooking into function calls of another pro-
cess [15]. By injecting the DLL, code is injected into the address space of the
target process and therefore it is possible to manipulate the behaviour of the pro-
gram. DLL-injection can be performed in four stages. The first stage includes
attaching a process with access to the DLL to inject to a target process, using the
OpenProcess function from the Windows API. In the second stage memory will
be requested within the target process, which has the size of the DLL. The DLL

3https://docs.microsoft.com/en-us/windows-hardware/drivers/storage/storage-driver-
architecture

8

is then copied to the created process memory space and executed by the Windows
API-call CreateRemoteThread.

Executables in Windows could use an IAT, which contains the memory address
of functions that are imported from libraries. By altering the memory address of
a targeted function by the memory address of a hooking function, the call can
be intercepted, altered or forwarded to the original target function. The memory
address could be altered in the executable or via DLL-injection by altering the
address in the process’ memory. A downside of this technique is that it only works
for load-time dynamic linking and not for run-time dynamic linking, because when
run-time dynamic linking is used, the real memory addresses of DLL-functions
are retrieved. In appendix B we show snippet of the import address table of
kernel32.dll attached to a notepad process. The second memory address in the
lines is the memory address of the function that is imported from ntdll.dll.

With inline hooking, the first few bytes of the function are overwritten by a
jump instruction to a detour-function. The detour-function calls, after executing
its instructions, a trampoline function, which is used to call the target function.
The target function returns to the detour-function, which returns to the source
function. Downside of using this technique is that the hooking function must
perform the instructions that were overwritten in the source function. However,
to allow inline hooking, Microsoft places a dummy-instruction at the start of the
function (MOV EDI, EDI). This allows space for a short jump instruction to, for
example, five padding bytes inserted by Microsoft before the instruction. These
padding bytes could be used to perform a long jump to the hooking function.

4.2.2 Kernel-mode hooking

Four techniques for kernel-mode hooking are System Service Dispatch Table (SSDT)
hooking, IRP hooking, Interrupt descriptor table (IDR) hooking and Sysenter
hooking.

The SSDT contains mappings between function pointers and kernel routines.
In order to hook into this function, the address of the call to the kernel routine
should be changed to the address of the hooking function. This, however, does
not work on 64-bit Windows versions as it runs Kernel Patch Protection, which
prevents the kernel from being patched.

IRPs are used to communicate with device drivers and for intercommunication
between drivers. Every drive must contain the DriverEntry-function, which cre-
ates a driver object for every device that handles I/O requests. The I/O manager,
which is responsible for managing the I/O operations in Windows, creates a driver
object at the same time. This driver object will be populated with addresses to
the actual functions in the driver by the DriverEntry routine. Hooking can be
performed by modifying the address of the driver’s functions in the driver object.

The IDT contains pointers to Interrupt Service Routines (ISR) and is used
to map interrupts and exceptions with responses. Replacing the address to the
response could be replaced by the address of the hooking function, which allows
the hook to be executed every time an interrupt was received. This, however,
does not work on 64-bit Windows versions due to Kernel Patch Protection.

Sysenter allows user-mode programs to request services from the kernel. Sy-
senter is called in ntdll.dll and jumps to the address set in SYSENTER EIP. By
changing the address in register SYSENTER EIP, the sysenter command could be
forwarded to a detour-function.

9

4.3 File system minifilter drivers

The minifilter drivers are used to either log, monitor, modify or prevent I/O
operations that are related to the file system. Microsoft Windows provides an
I/O manager, which forwards I/O requests to the file system [3]. Windows also
has a built-in filter manager that operates as a kernel-mode driver and attaches to
the file system stack if filter drivers are active. This allows the filter manager to
intercept I/O requests forwarded to the file system driver and pass them through
the minifilter drivers. The process is shown in figure 3.

Figure 3: Simplified I/O Stack with filter manager en three minifilter drivers
(Microsoft, 20174)

In figure 3 minifilters are shown in different categories. We observe that filter
category Anti-Virus (AV) has a higher altitude than category Replication. The
AV minifilter has a higher priority than the Replication filter, which means that
drivers in the AV category will process the I/O request before drivers in the
Replication category process it. This mechanism is for example used to prevent
malicious data from being replicated as the AV minifilter could block the I/O
operation when it detects malicious activity.

4.3.1 Altitudes

Microsoft provides a list with allocated altitudes to existing file system minifilter
drivers [16]. Under column company, we observed that multiple companies that
create endpoint security or AV software have registered an altitude for minifilter
drivers. Those minifilter drivers are registered in the higher range of altitudes,
allowing the minifilter driver to be processed earlier than lower altitudes. As of
now the highest altitude not registered by Microsoft is registered by Raytheon
Cyber Solutions, an American defence and technology company that includes
endpoint security in their services.

4https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts

10

4.3.2 Filter manager

The filter manager maintains device objects, which are in order attached to the
file system. A device object is also known as a frame and represents a range
of altitudes. If a minifilter registers to the filter manager, the altitude specified
in the minifilters’ INF-file is retrieved. If the specified altitude is higher than
the frame altitude the frame was extended to, the frame will be extended to the
defined altitude. If a legacy filter is active, the altitude of the legacy filter is
determined using FltpCalculateLegacyFilterAltitude and the frame altitude
can be extended until the legacy filter’s altitude. If the specified altitude is higher
than the extended frame a new set of device objects is added to each stack.

A device object is attached by the filter manager through function
FltpAttachDeviceObject. In figure 4 we show a part of this function that was
disassembled from fltmgr.sys in IDA Free edition. In this function IoAttachDeviceToDeviceStackSafe

is called, which attaches an input device object to a given target device object
[19].

Figure 4: Call from filter manager to attachdevice object to attach the input
device object to a target device object

4.4 File caching

Windows has a method for caching files when they are in use or have recently been
used [21]. The files will be stored in the system memory, also known as the system
file cache. If a file is in the cache, which is the case when a handle is opened to
the file and memory availability equals the size of the file, all write operations and
read operations will be performed to and from the system file cache. A locked
file, such as the active directory database on the domain controller, is in use by
the domain controller and is being actively read and written to. Therefore there
is a chance that the active directory database resides in the cache, when the the
domain controller is turned on. Because of this, the data the attacker wrote to
the file on the NTFS volume could be overwritten by the cached data. Also, the
data is read only from disk if the file was removed from the system file cache.

4.4.1 Removing a file from the system file cache

A file can be removed from the system file cache using three methods. The system
file cache can be flushed by using the undocumented NtSetSystemInformation-
function from the Windows API [17]. This operation will temporarily slow down
the Operating System, since for all I/O operations the disk has to be queried
again, instead of the faster file cache. An implementation of this API-call is
located on the GitHub page of Eric Grange5.

The second method is to decrease the maximum size of the system file cache
and enable enforcing the maximum size using function NtSetSystemInformation.

5https://github.com/EricGrange/FlushFileCache/blob/master/FlushFileCache.dpr

11

Since the maximum size of the system file cache decreases, older unused files will
be removed from the system file cache to make space for new files. This method
however, slows down the Operating System since for some I/O operations the disk
has to be queried, instead of the file cache. An implementation of this method is
created by Mark Russinovich and is called CacheSet6.

The third method is to allocate empty memory to a process, until the memory
is full. This results in a smaller system file cache size and may eventually remove
the file from the cache. This method slows down the Operating System drastically,
since 100 percent of the memory is in use. An implementation of this method is
located at a blog of Chad Austin7.

6https://docs.microsoft.com/en-us/sysinternals/downloads/cacheset
7https://chadaustin.me/2009/04/flushing-disk-cache/

12

5 Experiment Results

The experiment results are divided into sections describing results of the write
experiments and methods to bypass NTFS Access lists and endpoint security.

5.1 Write experiments

Joseph Bialek describes in his script Invoke-NinjaCopy that he used a read handle
to the whole NTFS volume [1]. He parsed the input with an NTFS parser, such
that he is able to copy a selected file where he has no read access to. Based
on this information we have performed some experiments by attempting to use
WriteFile after opening a handle to the volume and disk to check whether the
destination is writable or not.

5.1.1 User-mode

We have built a user-mode program that attempts to open a handle to the volume
and disk using CreateFile from the Windows API. After opening the handle, the
program attempts to write to specific sections of the NTFS volume or disk using
WriteFile. The results are shown in table 3.

Handle to volume Handle to harddisk
Write to file system X X
Write to NTFS boot sector V X
Write to Master File Table X X
Alert by Endpoint security X V

Table 3: Results of write experiments sorted by writing to volume and harddisk

In our first experiment we opened a write handle to volume C: and attempted
to write RICK to the first four bytes of the NTFS boot sector. In appendix C
we show the initial 1024 bytes of the NTFS boot sector, followed by information
whether the volume is mounted and locked. This is followed by the 1024 bytes
of the boot sector after performing the writing operation. In this experiment,
writing to the boot sector succeeded as the first four bytes have been overwritten
by RICK.

In our second experiment we opened a write handle to volume C: and at-
tempted to write RICK to the first four bytes of the Master File Table (MFT). Us-
ing ntfsinfo64 by Sysinternals we determined the location of the MFT (0xC0000000),
which contains pointers to files attached to file IDs. In appendix C we show MFT-
data in the same format as our previous experiment. In this experiment, writing
to the MFT-section failed as the first four bytes have not been overwritten.

In our third experiment we opened a write handle to disk PhysicalDisk0.
When running the program, opening the read handle was detected by the AV-
solution and classified as malicious activity. However, after turning off the AV-
solution, we still were unable to write to the device. This is shown in appendix
C, which shows the first 1024 of the NTFS boot sector on offset 0x23700000 from
the start of the disk before and after performing the write operation.

Microsoft describes that since Windows Vista it is required to have exclusive
access to the volume or physical disk in order to write to it. This can be obtained
by locking or dismounting the volume with DeviceIoControl [7]. However, writ-
ing to the boot sector is allowed when opening a handle to the volume. Since we
performed the experiments on an active volume it is not possible to dismount or
lock the volume, thus we were unable to write to the Master File Table or file

13

system space. To write to the volume, the application communicates through the
file system driver to get access to the volume. To write to the disk, the application
communicates with the storage drivers to get access to the disk and the request
is not processed by the file system driver. At the file system level driver, access
to the NTFS boot sector is allowed and this is passed to the storage driver. At
the storage driver, writing to volume-related space is not allowed, unless the file
system level driver communicates this by setting the flag SL FORCE DIRECT WRITE

in the IRP [20].

5.1.2 Kernel-mode

The same experiments were performed with a kernel mode driver. As the driver
operates in a shared kernel space, the driver should have elevated permissions.
The results are shown in table 4.

Handle to volume Handle to harddisk
Write to file system X X
Write to NTFS boot sector V X
Write to Master File Table X X
Alert by Endpoint security X X

Table 4: Results of write experiments sorted by writing to volume and harddisk

We observed in the results in table 4 that we did not get an alert of the endpoint
security when opening a write handle to the harddisk. The write permissions for
kernel-mode and user-mode using the Windows API appear to be the same.

Microsoft describes that since Windows Vista it is required to have exclusive
access to the volume or physical disk in order to write to it. This can be obtained
by locking or dismounting the volume with DeviceIoControl [7].

However, Microsoft also describes a flag that can be set in an IRP stack pointer
to force a direct write to the volume: SL FORCE DIRECT WRITE [20]. Therefore, we
have written an additional kernel mode driver, mainly based on already existing
code published on the code project [10]. An additional user-mode application
communicates with this driver through Device IO control commands and sends
data through this interface. The kernel mode driver communicates directly with
the storage class driver, which is responsible for building SCSI Building Blocks
based on the input IRP and forward it to the appropriate driver. The results
of this experiment are shown in table 5. Since the kernel mode driver does not
interact with the file system driver, it was only possible to create a handle to the
harddisk.

IDE SATA SCSI SAS
Write to file system X X V V
Write to NTFS boot sector X X V V
Write to Master File Table X X V V
Alert by Endpoint security X X X X

Table 5: Results of write experiments while directly communicating with the
storage class driver, sorted by storage technology

Our results in table 5 show that it is possible to directly write to an active
NTFS volume using the kernel mode driver we have created. This, however,
is limited to the SCSI and SAS technologies. This allows data on the NTFS
volume to be overwritten. When attempting to write to IDE and SATA drives

14

using this proof of concept, the response from the storage port driver to the
class driver is INVALID SCSI BLOCK REQUEST, which means that there is no proper
translation from the sent IRP to a command in an SRB that the targeted storage
technology understands. A possible solution is to write a kernel mode driver
that communicates with the storage port drivers directly by using SRBs with the
commands that match the storage technologies.

5.2 Writing to files with raw disk access

In tables 3, 4 and 5 we have shown to what locations we can write under what
circumstances. From user-mode it is only possible to write to the NTFS boot
sector, while from kernel mode raw write access to the disk is possible, allowing
the complete NTFS volume to be overwritten. In order to write to files on an
NTFS volume, the location of the NTFS volume on the raw disk must be known.
Information about an NTFS volume, such as the cluster size, sector size and a
pointer to the Master File Table can be found in the boot sector. The NTFS boot
sector can be found by looking for bytes EB 52 90 4E 54 46 53 on the raw disk
[25].

5.2.1 Parsing the boot sector

The boot sector’s global structure is shown in table 6.

Offset (hex) Length Value
0x0 3 bytes JMP Instruction
0x3 8 bytes OEM ID
0xB 25 bytes BPB
0x24 48 bytes Extended BPB
0x54 426 bytes Bootstrap code
0x1FE 2 bytes End of sector marker

Table 6: Boot sector structure

The Bios Parameter Block (BPB)-section in the boot sector contains infor-
mation about the amount of sectors, clusters and the location of the Master File
Table (MFT). In order to write to files and determine their location, the relevant
data and their offset within the BPB are listed in table 7.

Offset (hex) Length Value
0x0B 2 bytes Bytes per sector
0x0D 1 byte Sectors per cluster
0x28 8 bytes Total amount of sectors
0x30 8 bytes Logical cluster number of MFT
0x38 8 bytes Logical cluster number copy MFT
0x40 1 byte Clusters per MFT record
0x44 1 byte Clusters per index buffer

Table 7: Relevant sector and cluster information and MFT location information
offsets within NTFS bootsector

This information can be used to calculate the byte location of the MFT from
the start of the NTFS volume:

ByteLocMFT = Sbytes ∗ Csectors ∗MFTclusterloc

15

ByteLocMFT is the location of the MFT in bytes, Sbytes is the amount of bytes
in the sector, Csectors is the amount of sectors in a cluster and MFTclusterloc is
the location in logical clusters of the MFT.

5.2.2 Parsing the Master File Table

The MFT contains file-records that describe information about a file, such as
attributes describing the name of the file, the creation time of the file and a
pointer to the actual data of the file. This pointer could be used to locate the
actual data on the volume and overwrite the content [24].

The MFT starts with a header attribute, which contains for example the file
identifier, flags to determine whether the file exists or not and the physical record
size of the MFT-record. These examples and their offsets within the MFT-record
are shown in table 8. The contents of this table are derived from an MFT-record
template for 010 editor by Andrea Barberio8.

Offset (hex) Length Value
0x0 4 bytes FILE, if invalid BAAD
0x14 2 bytes Attribute offset
0x16 2 bytes 00 00 = Deleted

01 00 = Allocated
02 00 = Directory deleted
03 00 = Directory allocated

0x18 4 bytes Actual record size
0x1C 4 bytes Physical record size

Table 8: Structure of an MFT File-record header

NTFS uses attributes to store file-related data, such as the filename and the
data of the file [24]. The attribute types, which are described in the first four
bytes of an attribute, should match hexadecimal values 30 00 00 00 or 80 00

00 00. Those values identify the file name and data attributes respectively. An
attribute’s content can either be resident or non-resident. The differences between
the resident header and non-resident header are shown in tables 9 and 10.

Offset (hex) Length Value
0x10 4 bytes Length of content
0x14 2 bytes Offset to content
0x16 Defined by length of content Content

Table 9: NTFS attribute resident header specific fields

Offset (hex) Length Value
0x10 8 bytes Start of VCN Runlist
0x18 8 bytes End of VCN Runlist
0x20 2 bytes Offset to runlist

Table 10: NTFS attribute non-resident header specific fields

If the attribute’s content is resident, the content resides within the MFT-
record. The location and length of this content are defined by the offset and

8https://www.sweetscape.com/010editor/templates/files/MFTRecord.bt

16

length values shown in table 9. If the attribute’s content is non-resident, the data
is located outside of the MFT-record. The location is defined using a data runlist.
The structure of a runlist is shown in table 11.

Offset (hex) Length Value
0x0 1 byte Header
0x1 Defined by first 4 bits of header Cluster count
Unknown Defined by last 4 bits of header LCN Offset

Table 11: NTFS Data run structure repeated x times

The purpose of a data runlist is to identify the location of (a fragment of)
data that is related to the MFT-record. The first hexadecimal digit in the header
defines the length of the cluster count field and the second hexadecimal digit in
the header defines the length of the Logical Cluster Number (LCN) offset field.
If the header is set to 00, the end of a data runlist is indicated.

5.2.3 Overwriting file data

If, using the data runs, the cluster numbers on the volume are identified where
the data is located. The data at that location can be overwritten. If the data is
fragmented, the clusters that contain the data relevant for the file must be written
to.

Using this method to overwrite file data bypasses the NTFS permissions set on
a file as we do not communicate with the file system driver, which is responsible
for maintaining those permissions. Next to that, since we have raw disk access, it
is possible to write to files that are locked on the NTFS volume, such as NTDS.dit.
This file is the Active Directory database and resides on the domain controller.

5.3 Bypassing Endpoint Security I/O hooks

In section 4.3 we have described that multiple endpoint security solutions use
minifilter drivers to intercept I/O operations. These drivers generally have a high
altitude as the endpoint security solution has to detect malicious operations before
data is written to or read from the NTFS file system.

Based on this information we have performed some more writing tests with
endpoint security protection solutions installed on the Windows 7 machines. The
experiments included to test whether endpoint security solutions would detect if a
malicious file is written to the disk with the regular WriteFile function from the
Windows API and our method using a kernel mode driver. The malicious file used
is Love Letter, which is a virtual basic (VBS) based worm that used to spread
itself through e-mail. According to virustotal, this malicious file is detected by
the majority of endpoint security solutions9.

In order to create a baseline, we have written the VBS-file to the user’s desktop
in user-mode. In our results this is marked as regular write. The endpoint security
solution should detect this in order to test whether writing the malicious data to
the disk using our methods works, without the endpoint security solution blocking
the operation or showing alerts. Then we performed all steps required to use our
described method to write (malicious) data to the NTFS volume. Loading the
driver is an operation that requires administrative privileges and was done using
the devcon tool from the Windows Driver Development Kit10.

9https://www.virustotal.com//file/556700ac50ffa845e5de853498242ee5abb288eb5b8ae1ae12bfdb5746e3b7b1/detection
10https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

17

In 64-bit editions of Windows, driver signature enforcement is enabled, which
disallows unsigned drivers to be loaded. In order to disable this enforcement
measure, we have used DSEFix11 that uses a vulnerability in an already signed
driver to get access to the kernel memory. We tested whether the endpoint security
solution would detect this based on heuristics and not based on signatures, since
this can be easily changed by modifying the source code slightly and rebuilding
the application.

We used our user-mode application that runs with administrative permissions
and attempted to communicate with our kernel-mode driver that directly com-
municates with the storage class driver. Through this communication the data in
the VBS-file was written to a file that exists on the NTFS volume.

The results of those write experiments are shown in table 12.

1 2 3 4 5 6
Regular write 3 3 3 3 3 3

Loading driver 7 7 7 7 7 7

Communication with driver 7 7 7 7 7 7

DSEFix activity 7 7 7 7 7 3

Write from kernel driver to disk 7 7 7 7 7 7

Table 12: Detection of writing malicious code to the disk by endpoint Security
solutions from user-mode and kernel-mode

1 = Kaspersky Internet Security
2 = Norton Security Deluxe
3 = McAfee Total Protection
4 = Bitdefender Internet Security
5 = Avira Free edition
6 = ESET Internet security

In table 12 is shown that all endpoint security solutions detect writing the file
to the disk using the regular Windows APIs. Loading the driver, communication
with the driver and write the malicious code to the disk are not detected by the
endpoint security solution. One endpoint security solution manages to detect
DSEFix activity based on heuristics.

5.3.1 Alternative unverified approach

One approach could be to create a minifilter driver that manually attaches itself to
a filter manager frame at a specified altitud by calling FltAttachVolumeAtAltitude.
The altitude set should be lower, approximately 20.000, which is lower than all
allocated altitudes according to Microsoft [16]. According to Microsoft’s docu-
mentation on filter manager routines for I/O requests, a minifilter is allowed to
open a file handle, read from a file and write to a file [18]. In the documentation of
FltCreateFile, a function to create a file handle, is described that it is possible
to pass a parameter containing the instance where it should start from. The I/O
request will then only pass the minifilter drivers below. Functions FltReadFile

and FltWriteFile allow the same parameter. A minifilter driver at an altitude
lower than all other minifilter drivers, will process an I/O operation last in the
stack. So, it would be possible that on every I/O operation that passes the stack
to the file system, data is written to the file system without Endpoint security
detecting this at filter driver level.

11https://github.com/hfiref0x/DSEFix

18

The downside of this method however, would be that the NTFS access lists
would not be bypassed, since we still would communicate with the file system
driver. The file system driver is responsible for managing the file access on an
NTFS volume based on the permissions a user has for a file.

19

6 Recommendations

Based on the findings in this research we have formulated some recommendations
that could mitigate the risk that is followed by writing to locked files and bypassing
real-time protection enabled endpoint security.

In order to mitigate the risk of writing malicious data to the disk without
endpoint security detecting this, the solution should hook into a lower level driver
than the file system driver to monitor and block the I/O operations based on con-
tent and destination. This would be possible by hooking into the IRP MJ WRITE-
function of the storage-related drivers as described in section 4.2. Another possi-
bility is to actively block loading of unsigned drivers, unless a user manually has
given permission to allow loading of each driver.

Microsoft could block the SL FORCE DIRECT WRITE flag in IRPs for third party
drivers at file system and storage level drivers. Only drivers approved and signed
by Microsoft should be able to use this flag.

Use at least file-based encryption in the file system to encrypt files and im-
plement this in the software that uses these files. If an attacker wants to use the
in this research described methods to write to a file, it is required to know the
encryption key(s) to encrypt the data to be written. In this situation an attacker
needs to read the complete file, decrypt the content using the key, change the
content in buffer that has to be changed and encrypt the content again. The
complete file must then be overwritten, unless the attacker wants to write its own
content to it. In the last case, the attacker is required to encrypt the content
using the key and write it to the appropriate data location on the NTFS volume.
If the level of encryption is implemented in such a way that, when a user is logged
on, the files on the raw disk are still encrypted, it is likely that the attacker needs
the encryption key of the disk, filesystem or files. This makes it more difficult to
overwrite files with data that is formatted correctly for its related software when
decrypted.

7 Discussion

Since it is possible to have write access to the raw disk, while bypassing the file
system filter driver, file system related checks are bypassed. Therefore, NTFS
access lists can be bypassed using a kernel mode driver that sends self-built IRPs
with the SL FORCE DIRECT WRITE flag set to the storage class driver. However, in
our proof of concept this is limited to SCSI- and SAS-controllers as the storage
class driver is not assigned to our ATA and IDE drivers, resulting in an incorrect
translation between IRPs and SRBs. This could possibly be resolved by building
a kernel-mode driver that directly communicates with the storage port driver that
is responsible for handling requests regarding specific storage technologies.

Real-time write-related protection features in the tested endpoint security can
be bypassed, since we do not communicate with the file system driver. This allows
us to write malicious code to the disk using our kernel-mode driver that directly
accesses the storage driver, without the endpoint security detecting this. This is
resolvable by hooking into the storage class driver and listen for IRP MJ WRITE

commands.
In our writing method we present a kernel mode driver. 64-bit editions of

Windows require the kernel mode driver to be signed. In order to check this, driver
signature enforcement is enabled and checks whether the kernel mode driver was
signed during loading. Tools, such as DSEFix12, use a vulnerability in an already
signed virtual box driver, where the kernel memory can be accessed. The driver

12https://github.com/hfiref0x/DSEFix

20

signature enforcement can be disabled in the kernel memory. It appears in section
5.3 that the majority of endpoint security solutions do not detect DSEFix or any
of its activity. Loading the kernel mode driver and the activity of the user mode
application with the kernel mode driver are also not flagged as malicious activity.

Loading the driver and communication with the driver is only possible with
administrative privileges. This method of writing still poses a risk as it would al-
low an attacker to write to locked files where a user with administrative privileges
does not have read or write access to. An example named in the introduction of
this research is the Active Directory database NTDS.dit. A user with adminis-
trative privileges could turn endpoint security off, but in this research we have
shown that the methods to load the driver, disable driver signature enforcement,
communication with the driver and writing malicious data to a disk are not de-
tected by most of the tested endpoint security solutions. Using the methods
described in this paper, it would be possible to write malicious data to the disk
without alerting a system administrator about turning the endpoint security off
for example.

The system file cache might interfere with bypassing NTFS ACLs. For exam-
ple when an attacker attempts to write to the active directory database and the
database is in use, the file might be stored in the system file cache. This results in
all read and write operations from the file system going directly to the system file
cache and not to the disk. In order to prevent the system file cache from interfer-
ing, just before the write of the data the system file cache should be flushed. Our
method always writes the new data directly to the disk. This in combination with
the flush, would require the Operating System to perform a new read operation
from the disk, since it can not read from the system file cache. This would allow
the new data to be read and implemented on a live system. This theory however,
still has to be verified.

When an attacker is able to access the kernel space, basically anything related
to Windows can be bypassed or modified. This also includes the retrieval of file
encryption keys that could be in memory. On 64-bit editions of Windows, a
feature called patchguard is in place that detects whether the kernel memory was
altered with, making it more difficult to change variables in the kernel. However,
there are multiple methods to bypass patchguard described on the Github page
of hfiref0x13. This research presents a way to bypass endpoint security, without
modifying the endpoint security solution in kernel. Also, ways to bypass the NTFS
permissions are presented to for example write to locked files while the volume is
in use. As the method is as of now undetected, alerts to system administrators
might be prevented allow a red team to infiltrate an infrastructure silently.

8 Conclusion

Our research question is: In what way can data be written to an NTFS filesystem,
such that hooks in write operations within Windows are bypassed?

From user-mode it is possible to change the NTFS Master File Table location
pointer in the boot sector, this could result in a bypass of the software hooks in
case a copy of the Master File Table has been created that is accessible from user-
space and the location pointer is changed to that new location. This is possible
by opening a handle to the volume and writing to the boot sector.

From kernel-mode it is possible to have raw disk write access, bypassing the
file system driver, by directly communicating to the storage class driver. Since the
volume is maintained by the file system driver and we communicate directly to

13https://github.com/hfiref0x/UPGDSED

21

the storage class driver, volume write access is not relevant. In order to perform
a raw write to the disk, a kernel mode driver must be created that builds its own
IRPs with major function IRP MJ WRITE and sets the flag SL FORCE DIRECT WRITE

to allow writing directly to disk. The targeted driver must be set to the storage
class driver disk.sys. The device object must be assigned by directly referring
to the hard disk object that is created by the storage class driver. Lower level
methods of writing are possible, but specific commands of the storage technology
have to be learned and included in the SCSI Request Block to the storage port
driver.

Both approaches require administrative privileges to run and result in by-
passing real-time write protection features of the tested endpoint security and
bypassing of NTFS ACLs. The NTFS ACL bypass is limited, since in-use files
could be located in the system file cache. Altering those files on disk could lead to
invalid files as the data in the system file cache could overwrite the data that was
written directly to the disk using our method described in section 5.1. Only one
of the tested endpoint security solutions could detect the write methods described
in this research based on heuristics of DSEFix, but not based on the user-mode
and kernel-mode driver activity that perform the actual write operation.

9 Future work

Future work might include to research lower level methods such as directly adress-
ing the storage port driver with a kernel mode driver. This requires SRBs to be
created and forwarded to the storage port drivers containing the commands that
match the storage technology. A reference for SRB to ATA translation is created
by T10 in 2004 [29].

As the writing methods that allow raw disk access require kernel mode access,
a relevant research field would be to investigate other methods to load unsigned
kernel drivers or change kernel memory variables related to driver signature en-
forcement by exploiting vulnerabilities in already signed drivers.

Another research that might be performed is to test other endpoint security
solutions. Check with different sensitivity levels whether they are able to detect
the activity and test this also for the researched lower level methods.

As it is possible to write data to the disk, while bypassing the NTFS file
system drivers, it would be interesting to check whether it would be possible to
bypass Windows audit log triggers, such as: On modifying data on location X, a
log event is triggered and a log is sent to a central server.

The system file cache might interfere with the method we have described in
our paper to write data to the raw NTFS volume. It requires research whether
the methods described in section 4.4 would work to allow a modification of an
in-use locked file on the disk.

22

References

[1] Joseph Bialek. Invoke-NinjaCopy. Oct. 2013. url: https://github.com/
clymb3r/PowerShell/blob/master/Invoke-NinjaCopy/Invoke-NinjaCopy.

ps1 (visited on 06/04/2018).

[2] Microsoft Hardware Dev Center. Allocated Altitudes. Apr. 2017. url: https:
/ / docs . microsoft . com / en - us / windows - hardware / drivers / ifs /

allocated-altitudes (visited on 06/05/2018).

[3] Microsoft Hardware Dev Center. What Is a File System Filter Driver? Apr.
2017. url: https://docs.microsoft.com/en-us/windows-hardware/
drivers/ifs/what- is- a- file- system- filter- driver- (visited on
06/04/2018).

[4] Windows Dev Center. About Transactional NTFS. May 2018. url: https:
//msdn.microsoft.com/en-us/library/windows/desktop/aa363764(v=

vs.85).aspx (visited on 06/04/2018).

[5] Windows Dev Center. File Management Functions. May 2018. url: https:
//msdn.microsoft.com/en-us/library/windows/desktop/aa364232(v=

vs.85).aspx (visited on 06/04/2018).

[6] Windows Dev Center. ReadFile Function. May 2018. url: https://msdn.
microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85)

.aspx (visited on 06/04/2018).

[7] Windows Dev Center. WriteFile Function. May 2018. url: https://msdn.
microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85)

.aspx (visited on 06/04/2018).

[8] clymb3r. Using PowerShell to Copy NTDS.dit / Registry Hives, Bypass
SACL’s / DACL’s / File Locks. June 2013. url: https : / / clymb3r .

wordpress . com / 2013 / 06 / 13 / using - powershell - to - copy - ntds -

dit-registry-hives-bypass-sacls-dacls-file-locks/ (visited on
06/04/2018).

[9] Cylance. “Feature Focus CylancePROTECT”. In: (Nov. 2017). url: https:
//www.cylance.com/content/dam/cylance/pdfs/feature- focus/

Feature_Focus_PROTECT_App_Control.pdf (visited on 06/29/2018).

[10] dkg0414. “Reading and Writing to Raw Disk Sectors”. In: (Aug. 2008).
url: https://www.codeproject.com/Articles/28314/Reading-and-
Writing-to-Raw-Disk-Sectors (visited on 06/24/2018).

[11] Kuba Gretzky. Defeating Antivirus Real-time Protection From The Inside.
July 2016. url: https://breakdev.org/defeating-antivirus-real-
time-protection-from-the-inside/ (visited on 06/05/2018).

[12] Symantec Bill Hayes. “Who Goes There? An Introduction to On-Access
Virus Scanning, Part One”. In: (Sept. 2002). url: https://www.symantec.
com / connect / articles / who - goes - there - introduction - access -

virus-scanning-part-one (visited on 06/29/2018).

[13] Hex-Rays. IDA 7.0 Freeware Download page. 2017. url: https://www.hex-
rays.com/products/ida/support/download_freeware.shtml (visited on
06/08/2018).

[14] Matt Hillman. Dynamic Hooking Techniques: User Mode. Aug. 2015. url:
https://www.mwrinfosecurity.com/our-thinking/dynamic-hooking-

techniques-user-mode/ (visited on 06/11/2018).

23

https://github.com/clymb3r/PowerShell/blob/master/Invoke-NinjaCopy/Invoke-NinjaCopy.ps1
https://github.com/clymb3r/PowerShell/blob/master/Invoke-NinjaCopy/Invoke-NinjaCopy.ps1
https://github.com/clymb3r/PowerShell/blob/master/Invoke-NinjaCopy/Invoke-NinjaCopy.ps1
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/what-is-a-file-system-filter-driver-
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/what-is-a-file-system-filter-driver-
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363764(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363764(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363764(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364232(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364232(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364232(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
https://clymb3r.wordpress.com/2013/06/13/using-powershell-to-copy-ntds-dit-registry-hives-bypass-sacls-dacls-file-locks/
https://clymb3r.wordpress.com/2013/06/13/using-powershell-to-copy-ntds-dit-registry-hives-bypass-sacls-dacls-file-locks/
https://clymb3r.wordpress.com/2013/06/13/using-powershell-to-copy-ntds-dit-registry-hives-bypass-sacls-dacls-file-locks/
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_App_Control.pdf
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_App_Control.pdf
https://www.cylance.com/content/dam/cylance/pdfs/feature-focus/Feature_Focus_PROTECT_App_Control.pdf
https://www.codeproject.com/Articles/28314/Reading-and-Writing-to-Raw-Disk-Sectors
https://www.codeproject.com/Articles/28314/Reading-and-Writing-to-Raw-Disk-Sectors
https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/
https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/
https://www.symantec.com/connect/articles/who-goes-there-introduction-access-virus-scanning-part-one
https://www.symantec.com/connect/articles/who-goes-there-introduction-access-virus-scanning-part-one
https://www.symantec.com/connect/articles/who-goes-there-introduction-access-virus-scanning-part-one
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.mwrinfosecurity.com/our-thinking/dynamic-hooking-techniques-user-mode/
https://www.mwrinfosecurity.com/our-thinking/dynamic-hooking-techniques-user-mode/

[15] J.Berdajs and Z. Bosić. Extending applications using an advanced approach
to DLL injection and API hooking. Software - Practice and Experience
40:567-584. Jan. 2010. url: http://blog.opensecurityresearch.com/
2013/01/windows-dll-injection-basics.html (visited on 06/24/2018).

[16] Microsoft. Allocated Altitudes. Apr. 2017. url: https://docs.microsoft.
com/en- us/windows- hardware/drivers/ifs/allocated- altitudes

(visited on 06/14/2018).

[17] Microsoft. Command line utility for purging Window’s standby list. 2018.
url: https://gist.github.com/bitshifter/c87aa396446bbebeab29

(visited on 07/08/2018).

[18] Microsoft. Filter Manager Routines for I/O Requests Generated by the Minifil-
ter Driver. Apr. 2017. url: https : / / docs . microsoft . com / en - us /

windows-hardware/drivers/ifs/i-o-requests-generated-by-the-

minifilter-driver (visited on 06/19/2018).

[19] Microsoft. IoAttachDeviceToDeviceStackSafe function. Apr. 2018. url: https:
/ / docs . microsoft . com / en - us / windows - hardware / drivers / ddi /

content/ntddk/nf-ntddk-ioattachdevicetodevicestacksafe (visited
on 06/19/2018).

[20] Microsoft. IRP MJ WRITE. Nov. 2017. url: https://docs.microsoft.
com/en-us/windows-hardware/drivers/ifs/irp-mj-write (visited on
06/24/2018).

[21] Microsoft. Performance Tuning Cache and Memory Manager. Oct. 2017.
url: https://docs.microsoft.com/en-us/windows-server/administration/
performance-tuning/subsystem/cache-memory-management/ (visited
on 07/08/2018).

[22] Sameer Patil. Code Injection and API Hooking Techniques. Mar. 2014.
url: http://nagareshwar.securityxploded.com/2014/03/20/code-
injection-and-api-hooking-techniques/ (visited on 06/11/2018).

[23] Chandra Prakash. Your filters are bypassed: Rustock.C in the kernel. Sunbelt
Software - USA. Nov. 2008. url: https://www.virusbulletin.com/

virusbulletin/2008/11/your- filters- are- bypassed- rustock- c-

kernel (visited on 06/06/2018).

[24] Richard Russon and Yuval Fledel. “NTFS Documentation”. In: (2018). url:
http://inform.pucp.edu.pe/~inf232/Ntfs/ntfsdoc.pdf (visited on
07/08/2018).

[25] Thomas Schwarz. COEN 252 Computer Forensics - NTFS. 2007. url: http:
//www.cse.scu.edu/~tschwarz/coen252_07Fall/Lectures/NTFS.html

(visited on 06/25/2018).

[26] Cloudburst Security. Reverse Engineering for Malware: Shellcodes and AV/API
Hook Evasion. June 2016. url: https://www.cloudburstsecurity.com/
2016/06/10/reverse- engineering- for- malware- shellcodes- and-

avapi-hook-evasion/ (visited on 06/05/2018).

[27] Isso (a Stackoverflow user). (windows) raw write to file without involving
win32api. June 2012. url: https://stackoverflow.com/questions/

11229612/windows-raw-write-to-file-without-involving-win32api/

11252104#11252104 (visited on 06/04/2018).

[28] Statcounter. Desktop Windows Version Market Share Worldwide. 2018. url:
http://gs.statcounter.com/windows-version-market-share/desktop/

worldwide/ (visited on 06/25/2018).

24

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://gist.github.com/bitshifter/c87aa396446bbebeab29
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/i-o-requests-generated-by-the-minifilter-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/i-o-requests-generated-by-the-minifilter-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/i-o-requests-generated-by-the-minifilter-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/nf-ntddk-ioattachdevicetodevicestacksafe
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/nf-ntddk-ioattachdevicetodevicestacksafe
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/nf-ntddk-ioattachdevicetodevicestacksafe
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-write
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-write
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/
http://nagareshwar.securityxploded.com/2014/03/20/code-injection-and-api-hooking-techniques/
http://nagareshwar.securityxploded.com/2014/03/20/code-injection-and-api-hooking-techniques/
https://www.virusbulletin.com/virusbulletin/2008/11/your-filters-are-bypassed-rustock-c-kernel
https://www.virusbulletin.com/virusbulletin/2008/11/your-filters-are-bypassed-rustock-c-kernel
https://www.virusbulletin.com/virusbulletin/2008/11/your-filters-are-bypassed-rustock-c-kernel
http://inform.pucp.edu.pe/~inf232/Ntfs/ntfsdoc.pdf
http://www.cse.scu.edu/~tschwarz/coen252_07Fall/Lectures/NTFS.html
http://www.cse.scu.edu/~tschwarz/coen252_07Fall/Lectures/NTFS.html
https://www.cloudburstsecurity.com/2016/06/10/reverse-engineering-for-malware-shellcodes-and-avapi-hook-evasion/
https://www.cloudburstsecurity.com/2016/06/10/reverse-engineering-for-malware-shellcodes-and-avapi-hook-evasion/
https://www.cloudburstsecurity.com/2016/06/10/reverse-engineering-for-malware-shellcodes-and-avapi-hook-evasion/
https://stackoverflow.com/questions/11229612/windows-raw-write-to-file-without-involving-win32api/11252104#11252104
https://stackoverflow.com/questions/11229612/windows-raw-write-to-file-without-involving-win32api/11252104#11252104
https://stackoverflow.com/questions/11229612/windows-raw-write-to-file-without-involving-win32api/11252104#11252104
http://gs.statcounter.com/windows-version-market-share/desktop/worldwide/
http://gs.statcounter.com/windows-version-market-share/desktop/worldwide/

[29] T10. “SCSI to ATA Command Translations”. In: (2004). 04-136r0. T10
SCSI to ATA Translations Study Group. url: http://t10.org/ftp/t10/
document.04/04-136r0.pdf (visited on 06/29/2018).

[30] EnSilo Research Team. “Captain Hook - Pirating AVs to Bypass Exploit
Mitigations”. In: (2016). Blackhat Conference USA 2016 - Presentation.
url: https://www.blackhat.com/docs/us- 16/materials/us- 16-

Yavo-Captain-Hook-Pirating-AVs-To-Bypass-Exploit-Mitigations-

wp.pdf (visited on 06/04/2018).

25

http://t10.org/ftp/t10/document.04/04-136r0.pdf
http://t10.org/ftp/t10/document.04/04-136r0.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Yavo-Captain-Hook-Pirating-AVs-To-Bypass-Exploit-Mitigations-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Yavo-Captain-Hook-Pirating-AVs-To-Bypass-Exploit-Mitigations-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Yavo-Captain-Hook-Pirating-AVs-To-Bypass-Exploit-Mitigations-wp.pdf

A IDA v7.0 Windows API analysis

Kernel32.dll: WriteFile function. Contains a reference to import from ntdll.dll.

1 .text:6B86E270 ; BOOL __stdcall WriteFile(HANDLE hFile, LPCVOID

lpBuffer, DWORD nNumberOfBytesToWrite, LPDWORD

lpNumberOfBytesWritten, LPOVERLAPPED lpOverlapped)

↪→

↪→

2 .text:6B86E270 public _WriteFile@20

3 .text:6B86E270 _WriteFile@20 proc near ; DATA XREF:

.rdata:off_6B880768^^Yo↪→

4 .text:6B86E270

5 .text:6B86E270 hFile = dword ptr 4

6 .text:6B86E270 lpBuffer = dword ptr 8

7 .text:6B86E270 nNumberOfBytesToWrite= dword ptr 0Ch

8 .text:6B86E270 lpNumberOfBytesWritten= dword ptr 10h

9 .text:6B86E270 lpOverlapped = dword ptr 14h

10 .text:6B86E270

11 .text:6B86E270 jmp ds:__imp__WriteFile@20 ;

WriteFile(x,x,x,x,x)↪→

12 .text:6B86E270 _WriteFile@20 endp

Ntdll.dll: NtWriteFile function. Contains a Wow64SystemServiceCall to enter
kernel-mode with a sysenter.

1 .text:4B2EE8B0 ; __stdcall NtWriteFile(x, x, x, x, x, x, x, x, x)

2 .text:4B2EE8B0 public _NtWriteFile@36

3 .text:4B2EE8B0 _NtWriteFile@36 proc near ; CODE XREF:

EtwpFlushBuffer(x,x,x)+12C^^Xp↪→

4 .text:4B2EE8B0 ;

EtwpFinalizeLogFileHeader(x,x)+1DD^^Xp ...↪→

5 .text:4B2EE8B0 mov eax, 1A0008h ;

NtWriteFile↪→

6 .text:4B2EE8B5 mov edx, offset

_Wow64SystemServiceCall@0 ; Wow64SystemServiceCall()↪→

7 .text:4B2EE8BA call edx ;

Wow64SystemServiceCall() ; Wow64SystemServiceCall()↪→

8 .text:4B2EE8BC retn 24h

9 .text:4B2EE8BC _NtWriteFile@36 endp

Ntoskrnl.exe: KiSystemService will be the call handler and call NtWritefile.
NtWriteFile then calls for IopSynchronousServiceTail.

1 PAGE:00000001404CCCF2 mov r9b, 1

2 PAGE:00000001404CCCF5 mov r8, rsi

3 PAGE:00000001404CCCF8 mov rdx, rdi ; Irp

4 PAGE:00000001404CCCFB call

IopSynchronousServiceTail↪→

5 PAGE:00000001404CCD00 jmp loc_1404CCB8F

Ntoskrnl.exe: IopSynchronousServiceTail calls IofCallDriver.

1 PAGE:00000001404CB5B3 loc_1404CB5B3: ;

CODE XREF: IopSynchronousServiceTail+181^^Xj↪→

2 PAGE:00000001404CB5B3 ;

IopSynchronousServiceTail+347^^Yj↪→

26

3 PAGE:00000001404CB5B3 mov rdx, rbx ; Irp

4 PAGE:00000001404CB5B6 mov rcx, r13 ;

DeviceObject↪→

5 PAGE:00000001404CB5B9 call IofCallDriver

6 PAGE:00000001404CB5BE mov ebp, eax

Ntoskrnl.exe: IofCallDriver sends IRP MJ WRITE input/output request packets
to the drivers.

1 PAGEVRFY:0000000140795600 dq offset aIrp_mj_write ;

"IRP_MJ_WRITE"↪→

B Import Address Table of kernel32.dll attached
to process Notepad

1 00007ffc`e1099700 00007ffc`e392bff0 ntdll!NtLockFile

2 00007ffc`e1099708 00007ffc`e392d7b0 ntdll!NtUnlockFile

3 00007ffc`e1099710 00007ffc`e392a280 ntdll!NtAllocateVirtualMemory

4 00007ffc`e1099718 00007ffc`e392a040 ntdll!NtReadFile

5 00007ffc`e1099720 00007ffc`e38e2560 ntdll!RtlIsTextUnicode

6 00007ffc`e1099728 00007ffc`e392a080 ntdll!NtWriteFile

C NTFS write test results

Figure A1: Succesful write to NTFS boot sector with WriteFile

27

Figure A2: Failed write attempt to NTFS Master File Table with WriteFile

Figure A3: Failed write attempt to NTFS physical disk with WriteFile

28

	Abstract
	Introduction
	Related work
	Methods
	Research environment
	Desk Research
	Static analysis
	Write experiments
	Experiments

	Verification

	Desk Research
	Windows API
	Hooking
	User-mode hooking
	Kernel-mode hooking

	File system minifilter drivers
	Altitudes
	Filter manager

	File caching
	Removing a file from the system file cache

	Experiment Results
	Write experiments
	User-mode
	Kernel-mode

	Writing to files with raw disk access
	Parsing the boot sector
	Parsing the Master File Table
	Overwriting file data

	Bypassing Endpoint Security I/O hooks
	Alternative unverified approach

	Recommendations
	Discussion
	Conclusion
	Future work
	Appendix IDA v7.0 Windows API analysis
	Appendix Import Address Table of kernel32.dll attached to process Notepad
	Appendix NTFS write test results

