
MSc System & Network Engineering

Automated analysis of
AWS infrastructures

P.G.J. Bennink

Supervisor: Cedric van Bockhaven

July 10, 2018

Abstract

This project intends to find out what information can be gathered
about an Amazon Web Services (AWS) infrastructure based on limited
access gained through the infiltration of an EC2 instance and/or retrieved
access keys. To this end we analyzed the AWS platform as a whole, the re-
lationships that can exist between components, and what factors influence
access to information about the infrastructure. We then built a tool that
automatically gathers and parses information about the infrastructure via
the AWS CLI to enumerate the components and the relationships between
these components. It then imports this data into a graph database that
allows for visualization of the data. This tool is able to combine the in-
formation multiple access keys can retrieve into one resulting database
of the infrastructure, and can also include components that can be seen,
but not yet accessed. We thus conclude that this type of AWS infrastruc-
ture analysis is useful for reconnaissance and security audits. Future work
includes expanding the amount of supported services and commands.

Contents

1 Introduction 2
1.1 Research question . 3

2 Related work 4

3 Methodology 4

4 Analysis 5
4.1 IAM . 5
4.2 Information . 8
4.3 Isolation . 8

5 Development 9
5.1 Crawling metadata . 9
5.2 Brute forcing permissions . 9
5.3 Data gathering and processing 10
5.4 Visualizing infrastructure . 11

6 Conclusion 12

7 Discussion 12
7.1 Future work . 13

1 Introduction

AWS is ”a secure cloud services platform, offering compute power, database
storage, content delivery and other functionality to help businesses scale and
grow.”[5] When someone successfully infiltrates a component of an AWS infras-
tructure, most of the time the next step is to try and expand this access to
other parts of the infrastructure. However, this is difficult without any further
knowledge of the infrastructure, and a lot of trial and error would be required.
So before proceeding, reconnaissance of the infrastructure should be done to
get a better idea of the components the infrastructure is made up of, the re-
lationships between these components, and the best way to ultimately obtain
access to valuable data within this infrastructure. Another important factor is
finding out which of the found components can already be accessed with the
found credentials.

Bloodhound, which relies on Microsoft’s Active Directory to ”easily identify
highly complex attack paths that would otherwise be impossible to quickly iden-
tify within an Active Directory environment”[7], offers solutions to the problems
specified above. However, the problem Bloodhound encounters is different, as
Active Directory is generally one centralized directory containing all related
entities. On AWS this is not the case, and data has to be sourced using a multi-
tude of commands, sometimes executed multiple times on different components
of the same type.

The goal of this project is thus to design a tool that crawls through an AWS
infrastructure, identifies as many components as possible, and shows the rela-
tionships between the different components. In the analysis for and development
of the tool we will pay attention to finding components of the infrastructure that
we currently cannot yet control. This is specifically important in red team oper-
ations, where expanding access is one of the immediate goals. Another use case
would be infrastructure administrators who are looking for misconfigurations,
e.g. components that have more access than necessary. Based on the results
we discuss what obstacles there still are in this type of analysis, and how they
could be solved in the future.

AWS uses a service called Identity & Access Management (IAM) to define
the privileges of access keys that entities (users, components or services) use to
interact with the infrastructure. One of the problems this project aims to solve
is the lack of knowledge about the privileges an access key has.

2

The tool built for this project relies on boto3, the Python AWS SDK[1],
Neo4j, a graph database often used for the mapping and visualization of net-
works of any kind[11], and py2neo, a ”a Python library and toolkit for working
with Neo4j.”[4] The tool has two functions. Firstly, for every AWS access key
that it receives as input it will try to obtain information about the AWS infras-
tructure. It will then parse this information and put it in the database for the
user to analyze. Secondly, the tool tries to access a predefined amount of AWS
CLI commands, and for each command return whether that access key has the
permission to execute it. The first function will only use a subset of commands
that can be used to gather data, while this function will also try commands
used to control the infrastructure and its components. This shows the user in
what way they would be able to escalate privilege and/or expand access.

1.1 Research question

The research question will be defined as follows:

Given an infiltrated AWS component, what part of the related
infrastructure would an automated tool be able to index?

The AWS component we chose is an EC2 instance, which is one of the
services AWS offers and will be further explained in Section 4. The reason we
assume an EC2 instance is the fact that EC2 instances are often the public-facing
component within an infrastructure, which is thus a realistic component to have
infiltrated first. Shell access to an EC2 instance also allows one to retrieve that
instance’s security credentials, which are the credentials this project uses to
gather data about the infrastructure.

While for this project we assume an infiltrated AWS component, the results
can be generalized to include any situation in which someone has obtained
security credentials to an AWS infrastructure.

What should be made clear at this point is that the tool that was built
during this project does not compromise any AWS components itself. This tool
is meant for reconnaissance of infrastructures to which the user of the tool has
gained access in a lawful manner (whether it be their own infrastructure or that
of a consenting third party). Furthermore, all access to the AWS infrastructure
happens via the AWS CLI.

3

2 Related work

While a certain amount of AWS analysis and/or visualization tools exist, most
of these are meant to be used in combination with admin-credentials. In our
situation, these would be the semi-metaphorical ”keys to the kingdom”, which
we cannot assume we have access to for this project.

Nimbostratus is a tool developed by Andres Riancho, which he presented at
Black Hat USA 2014.[6] This tool automates the retrieval of access keys and
metadata from an EC2 instance as well as the exploitation of a few commands
(if that EC2 instance has access to those). While the focus of Nimbostratus
lies more with the exploitation of an EC2 instance than with the analysis of the
greater infrastructure, this was a starting point for our analysis of AWS and
possible weaknesses in (configurations of) IAM.

Another very similar tool is CloudMapper[8], developed by Duo Labs. The
difference between this tool and the tool we are creating in this project is the
situation in which it can be used. CloudMapper can be used when accessing a
specific set of Actions is allowed. If access to even one of these is not possible,
this tool will refuse to work. It is not so much a tool used for penetration testing
as it is meant for analysis of an infrastructure to which a relatively high (and
very specific) amount of access has already been established. This is not viable
in the context of our project, as we do not know beforehand what access we
have with each key, and in a lot of cases we will not be able to expand the
access of an access key ourselves. Furthermore, Cloudmapper does not support
inputting multiple keys and creating one mapping based on multiple keys with
different permissions.

3 Methodology

The analysis of AWS was done by using the AWS platform (via the web interface,
the CLI and the Python SDK), creating multiple infrastructures and reading
the documentation. The development of the tool made for this project was done
in Python 3. For the testing of the tool the aforementioned infrastructures were
used.

The parts this project was made up of listed above were executed in an
iterative manner due to the fact that the testing of the tool during development
gave more insight into the working of AWS, and thus into what way the tool
could be improved. We have nevertheless tried to separate the different parts
in this report to make it clearer.

4

4 Analysis

AWS offers a vast amount of services. Defining what is part of ’the infrastruc-
ture’ can be difficult, as a lot of the services AWS offers play a supporting (but
nevertheless equally important) role in the infrastructure. Including all of these
services in this project would not be possible, as each service requires a differ-
ent method for interacting with it. Due to this we scoped this project to only
include the following main services:

• Amazon Elastic Compute Cloud (Amazon EC2), which is ”a web service
that provides secure, resizable compute capacity in the cloud.”[10] EC2
components (or instances, as they are called on AWS) are VMs ran on a
hypervisor. These VMs can run any of the more than 70,000 Community
AMIs (Amazon Machine Images), which are free, or one of the AMIs of-
fered on the AWS Marketplace, which are paid. are the backbone of each
infrastructure. They control all the other components in the infrastruc-
ture.

• Amazon S3, which is ”object storage built to store and retrieve any amount
of data from anywhere.”[10]

• Amazon Relational Database Service (Amazon RDS), which ”provides
cost-efficient and resizable capacity while automating time-consuming ad-
ministration tasks such as hardware provisioning, database setup, patching
and backups.”[10]

However, a setup with these services already makes use of other supporting
services. Of these services one is the most important, namely IAM, as it is the
security backbone that allows entities (users, components, services) to interact
with one another.

4.1 IAM

In Amazon’s words, IAM ”enables you to manage access to AWS services and re-
sources securely. Using IAM, you can create and manage AWS users and groups,
and use permissions to allow and deny their access to AWS resources.”[10] IAM
uses a combination of an Access Key ID, a Secret Access Key and optionally
a Token to allow users to interact with the infrastructure. Access Key IDs are
public, and can thus, with the right privileges, be found using the AWS CLI.
However, once created the Secret Access Key and Token cannot be retrieved
from AWS again, meaning that if a user loses either of these keys they will have
to generate new keys. Tokens are only used for temporary credentials.

IAM allows for the creating of groups, users, roles, and policies, the latter
of which is the basis for the whole platform.

5

{
” Vers ion ” : ”2012−10−17”,
” Statement ” : {

” E f f e c t ” : ”Allow ” ,
” Action ” : ” s3 : ListBucket ” ,
” Resource ” : ” arn : aws : s3 : : : example bucket ”

}
}

Listing 1: An example of an AWS policy

Listing 1 show an example of a policy. A policy is made up of statements
that either Allow or Deny a user or entity to access some command or resource.
The important parts of these statements are Effect, Action, and Resource.
Effect can either be Allow or Deny.

Figure 1: Decision flow chart of policy evaluation.

Source: AWS IAM Documentation

6

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

As can be seen in Figure 1, by default (if there is no policy that allows or
denies a user or entity to do something) the access will be denied. If there is
both an Allow and a Deny (in whatever order), access will also be denied. Only
if the applicable policies solely explicitly allow an action will it be allowed.

Action specifies what actions the statement allows or denies. These actions
are formatted as Service:Action, as multiple services use the same name for
the same action. Wildcards are allowed, meaning that *:List* allows all List-
actions to be used on all services.

In Listing Resource we can define on what specific resource an action can
be used. In 1 the S3:ListBucket command can only be used on the bucket
with the name example bucket.

In terms of information necessary for the enumeration of components of the
infrastructure, the *:List* and *:Describe* actions are the most important,
as these are the commands that will statically retrieve information about the
infrastructure without making modifications. What makes some of these com-
mands even more interesting, is that their output cannot be controlled at a
resource-level, meaning that if for instance EC2:DescribeInstances gets exe-
cuted, it will either show all or none of the EC2 instances, which makes this a
valuable source of information for this project. Amazon keeps a list with these
types of commands, which can thus be used for this project.[3]

Groups contain users, and policies can either be attached to users directly
or by creating a group of users and attaching policies to that group. Roles can
be used to attach policies to services or instances.

Roles are basically groups for users, and can be attached to as many instances
as necessary. If for example an EC2 instance needs to interact with an S3 bucket,
a user with rights to make modifications in the IAM service can attach a role
to an EC2 instance. They can then attach a policy to that role that allows
all entities in that role to access all (or specific) S3 buckets in various ways
(depending on what the instances need to do with the bucket).

These roles are interesting, as it could very well be that two instances that
show an overlap in their required permissions get attached to the same role. This
means that both instances have more access than they actually need, which can
be a security risk (the severeness of which is of course dependent on the Actions
and Resources.

As with all other IAM policies, the instances need access keys to make use
of their permissions. These access keys get distributed via a metadata server,
which each instance can access via http://169.254.169.254. This means that
if one in whatever way has gained shell access to an EC2 instance, they also have
access to very detailed metadata for that specific instance, which includes access
keys with all permissions that that EC2 instance has. This is thus one way in
which someone might be able to retrieve access keys from the AWS platform.

7

4.2 Information

All services and their actions can be controlled via either a CLI or one of the
SDKs that Amazon offers. What becomes clear after analysis of the output
of these commands is the fact that there is an overlap in information between
these commands. For almost all types of components an Action exists that
will enumerate all components of that type, EC2:DescribeInstances being an
example of such a command. In most cases these types of commands also of-
fers a lot of information about the surrounding components. In the case of
EC2:DescribeInstances we are able to retrieve information about the avail-
ability zones, subnet IDs, VPC IDs, mounted volumes, security groups and
owner ID of these instances. This is all information related to those instances,
but also related to other components in the infrastructure.

Another example is that when access to EC2:DescribeVpcs (which lists the
different VPCs with information about each) is prohibited, the existence of
certain VPCs can still be confirmed based on the data about, for instance, an
EC2 instance that resides in that VPC. As this project is about reconnaissance
(with the intention of expanding access) this is important information that will
be used in our resulting tool.

In a situation where access to for instance EC2:DescribeSecurityGroups is
prohibited, a decent amount of information about the existence of these security
groups can still be obtained via other Actions.

4.3 Isolation

As explained in Section 4.3, the information gained from lower-level components
can be used to gain knowledge about the higher-level components. Conversely,
one can also use the information of higher-level components to gain information
about lower-level components.

AWS also allows users to place the components of their infrastructure in a
Virtual Private Cloud (VPC). Among the services that support this are RDS
and EC2. These VPCs contain security groups, which can be used to limit
the amount, type, source and destination of traffic for components within that
group.

These security measures are meant to make malicious use more difficult,
as it just completely blocks all connections that do not abide by the rules of
that security group. However, with access to EC2:DescribeSecurityGroups,
which enumerates all security groups and the rules attached to them, making
an assumption about what is inside the security group (based on properties like
the group name and the allowed ports/IPs) would still be possible, and thus
decide whether gaining access to this security group and its contents would be
useful.

8

5 Development

The tool created for this project can be split up into three parts in terms of
functionality, which correspond to the subsections below. Firstly, the crawling
of an EC2 instance’s metadata server for all metadata, including its IAM cre-
dentials. Secondly, the enumeration of permissions of all access keys that are
given as input through bruteforcing, which may or may not include access keys
obtained using the previous function. And thirdly, the gathering, processing and
importing of data about the AWS infrastructure to Neo4j. The fourth section
below describes the resulting output, namely the visualization of the database
in Neo4j.

The first part is written in bash, and should be executed on an EC2 instance
to which shell access has been gained, as these metadata servers can only be
reached from or via the instance itself. While there are situations in which one
can remotely obtain data from the metadata server (see Nimbostratus[6]), this
is not within the scope of this project.

The second and third parts are written in Python 3, and can be executed
from any computer with an internet connection that can run Neo4j, Python 3,
and some Python packages. The access keys have at this point already been
obtained, meaning there is no reason to run this on the infiltrated EC2 instance.

5.1 Crawling metadata

Once shell access to an EC2 instance has been achieved it is very easy to access
the metadata server. To make it somewhat easier to crawl through the server
we wrote a short bash script that crawls through the folders on the server and
downloads all of the contents. It will then output the access keys found on the
server to the user, who can then use those keys (among potential other found
keys) as input for the second and third functions.

5.2 Brute forcing permissions

For all of the access keys the user has obtained this part of the tool tries to
execute a predefined amount of commands to offer the user some information
about the value of that key in the larger scheme of the infrastructure. For this
project the tool ran through 25 different commands from the services EC2, RDS
and S3. The EC2 service also includes commands about VPCs, the data volumes
of the EC2 instances, and the security groups. We will discuss this further in
section 7.1, but the reason we did not include more commands (both from the
services specified above and other services) is mainly related to time. However,
the technique used for this test can be extended to include other commands as
well. Brute forcing of these permissions is done via boto3.

9

5.3 Data gathering and processing

As explained in Section 4, a lot of *:Describe* commands contain information
about surrounding components. This is used in creating the relationships in the
database. For instance, each security group is contained in some VPC. Which
VPC this is can be found in the output for EC2:DescribeSecurityGroups. In
the importing of the data a top-down approach is used: first EC2:DescribeVpcs
is executed, if this returns data it will get imported in the database. After that
EC2:DescribeSecurityGroups is executed. If any of the groups in the output
of this command are located in a VPC that is not already in the database it
will get added now, and a relationship between the security group and its VPC
will be added. This same process is repeated for EC2 and RDS components,
with relationships added between these components and their respective secu-
rity groups, and S3 buckets (which do not have security groups). All of the
commands on AWS are executed using boto3, and the importing of the data to
the database is done using py2neo.

Now the access keys and their permissions need to be imported in the
database. For this the results of the functionality described in Section 5.2 are
used. For each of the commands used in that section we specified what type
of component they are related to (e.g. EC2:CreateDefaultVpc is related to
VPC). As in the previous example, the service to which the command belongs
is not always that of the type of component, so this had to be added manually.
If a command can be executed from an access key, a relationship between that
access key and the related components will be made.

10

5.4 Visualizing infrastructure

Neo4j has its own query language (Cypher[2]) and a web interface which can be
used to interact with the database (similar to PhpMyAdmin, but integrated).
This web interface allows you to query the database and visualize the output,
which is what we use for the visualization in this project.

Figure 2: Output of Neo4j query for example infrastructure.

An example of this visualization is shown in Figure 2. The infrastructure
shown here is a version of testing infrastructure used during this project. The
directional edges between the component-nodes (all colors apart from the green
nodes) indicate that the originating node contains the destination node, e.g.
all security groups are contained in one of the two VPCs. The edges from the
access keys (the green nodes) to the different components indicate that that
access key can in some way access the destination node.

All nodes and edges have properties. The properties of the nodes offer more
information about that component or access key. In the case of the components
it will show the information that was retrieved about that component from the
AWS CLI, in the case of the access keys it shows the Secret Access Key and
potentially a token. The properties of the edges from the access keys indicate
what commands can be executed on that component with that access key.

11

The figure shown above shows almost all types of components currently in
the database. The volumes connected to the EC2 instances (yellow) are not
shown. This is an example of what Neo4j can do. Just like with other query
languages, you can query the database to only include certain types of nodes or
relationships, based on label (e.g. ’EC2’ or ’VPC’) or properties (not shown in
Figure, but an example would be ’VpcId’ for the VPC nodes). This allows the
user to query the database based on the components or relationships they are
interested in.

6 Conclusion

Our research question was: ”Given an infiltrated AWS component, what
part of the related infrastructure would an automated tool be able to
index?” It would be impossible to answer this question with something like a
percentage or a calculation, as this all completely depends on the access key(s)
acquired, what permissions they have, whether they overlap,

One of the main takeaways of this project is that AWS’s default policies
allow for a relatively large amount of enumeration. This is among other things
due to the fact that a large amount of *:Describe* commands, which return
information about all components of a specific type, cannot be restricted on
a resource-level, meaning that if someone can access EC2:DescribeInstances

they will be able to enumerate all EC2 instances, including a large amount of
information that can then be used in the infiltration of those instances.

In terms of the access keys and their permissions, it seems that access keys do
not need to be very privileged to be useful in terms of indexing the infrastructure.
While higher level privileges might be useful from an infiltration perspective,
the enumeration of components and their relationships does not benefit from
this per se.

The tool created during this project is open source and available on Gitlab.1

7 Discussion

In general it seems that indexing an infrastructure is definitely possible in most
cases, even though this does not hold for the whole infrastructure. While it is
difficult to make a statement about this possibility for all infrastructures, access
keys and/or components some conclusions can be drawn, as has been shown in
the previous section. Based on these conclusions we are at least able to say that
it would be worthwhile to pursue the development and research behind this tool
further.

1AWS Infrastructure Analysis - Gitlab

12

https://gitlab.com/PeterBennink/aws-infrastructure-analysis

7.1 Future work

The tool created during this project can be expanded, refined and improved
upon in a vast number of ways. While this is mainly due to the vastness of
AWS as a service, other factors have also contributed to this. The decisions
made during this project were influenced by the limited time and the specific
research question, and in some cases would have been different if this tool would
be developed over a larger amount of time.

Path finding The most obvious improvement to this tool would be auto-
mated path finding, whereby you can input two nodes and get the shortest path
between these two nodes as output. This is a feature in Linkurious[9], which
allows users to interact with their graph-based data in an intuitive and graphical
way. Bloodhound uses Linkurious.js for this purpose, which has been deprecated
since 2016 and integrated in a new tool by the same organization called Ogma2.
Integrating this would thus be a logical next step in the development. However,
after inquiring with Linkurious it seems the minimal costs for using this library
would be much more than would be afforable. Another solution with similar
functionality will thus have to be found.

Further testing A second potential improvement would simply be further
testing of this tool on larger infrastructures. Currently we have only tested
this on our own testing infrastructure, which we kept expanding during the
infrastructure, but further testing could reveal new ways in which the tool should
be improved. While not in time for this project we are in talks with 3rd parties
to test this tool on their infrastructure.

Penetration testing toolkit The tool created for this project is, in its cur-
rent form, exclusively meant for reconnaissance. However, one way in which
this tool could become part of a larger toolkit is by creating something com-
parable to Metasploit, but for AWS. Functionality in this toolkit could include
scanning for and exploiting commands that can be used in privilege escalation,
automatically scanning S3 buckets or EC2 volumes for high entropy contents
(which could contain access keys or SSH private keys), or performing dictionary
attacks to find usernames or bucket names.

Expansion An obvious improvement would be making the tool compatible
with more AWS services. While the services in the scope of our project are
among the most often used services3, a lot of infrastructures will also use other
services, and even our testing infrastructure uses more services than we analyzed
for this project. An example of an interesting service to include is STS (Security
Token Service) which among other things allows an entity with an access key to
assume the role of another entity, which might have more or different privileges.

2Ogma - Linkurious
3Most popular AWS products of 2017 - globenewswire.com

13

https://linkurio.us/blog/ogma-js-library-large-scale-graph-visualization/
https://globenewswire.com/news-release/2018/02/01/1329867/0/en/2nd-Watch-Identifies-the-Most-Popular-AWS-Products-of-2017.html

Intelligent bruteforcing The permission bruteforcer created for this project
checks a list of commands specified beforehand. It will check this whole list for
each access key given. A more silent way to do this would be to prioritize the
commands, and let the user of the tool choose how ’loud’ the tool can be, much
like the T-flag in Nmap allows its user to indicate the timing intervals between
the different probes to stay under the radar of, for example, intrusion detection
systems.4 AWS allows an administrator to see which commands are executed
using which access keys. If suddenly every possible command gets executed
from multiple access keys this should raise some alarms. Prioritization could
help prevent these alarms, making the reconnaissance more silent.

Resource-level permissions In its current form the bruteforcer only tries
commands that do not support resource-level policies. Adding commands that
can be restricted at resource-level would involve trying each command, for each
access key, for each component that that command can be used on.

4Nmap manual: ”Timing and Performance” - nmap.org

14

https://nmap.org/book/man-performance.html

References

[1] AWS SDK for Python. https://aws.amazon.com/sdk-for-python/.

[2] Cypher Query Language Developer Guides & Tutorials. https://neo4j.

com/developer/cypher/.

[3] Granting IAM Users Required Permissions for Ama-
zon EC2 Resources. https://docs.aws.amazon.com/

AWSEC2/latest/APIReference/ec2-api-permissions.html#

ec2-api-unsupported-resource-permissions.

[4] The Py2neo v4 Handbook. http://py2neo.org/v4/.

[5] What is AWS? Amazon Web Services. https://aws.amazon.com/

what-is-aws/.

[6] Andresriancho. andresriancho/nimbostratus. https://github.com/

andresriancho/nimbostratus, Feb 2014.

[7] BloodHoundAD. BloodHound - Github. https://github.com/

BloodHoundAD/Bloodhound/wiki.

[8] duo labs. Cloudmapper - Github. https://github.com/duo-labs/

cloudmapper, Jun 2018.

[9] Linkurious. The graph intelligence platform. https://linkurio.us/.

[10] Jinesh Varia and Sajee Mathew. Overview of amazon web services. Amazon
Web Services, 2014.

[11] Jim Webber. A programmatic introduction to neo4j. In Proceedings of the
3rd annual conference on Systems, programming, and applications: soft-
ware for humanity, pages 217–218. ACM, 2012.

15

https://aws.amazon.com/sdk-for-python/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/ec2-api-permissions.html#ec2-api-unsupported-resource-permissions
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/ec2-api-permissions.html#ec2-api-unsupported-resource-permissions
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/ec2-api-permissions.html#ec2-api-unsupported-resource-permissions
http://py2neo.org/v4/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/what-is-aws/
https://github.com/andresriancho/nimbostratus
https://github.com/andresriancho/nimbostratus
https://github.com/BloodHoundAD/Bloodhound/wiki
https://github.com/BloodHoundAD/Bloodhound/wiki
https://github.com/duo-labs/cloudmapper
https://github.com/duo-labs/cloudmapper
https://linkurio.us/

	Introduction
	Research question

	Related work
	Methodology
	Analysis
	IAM
	Information
	Isolation

	Development
	Crawling metadata
	Brute forcing permissions
	Data gathering and processing
	Visualizing infrastructure

	Conclusion
	Discussion
	Future work

