Informatics for a complex world
A research focus of the Informatics Institute

Cees de Laat, Maarten de Rijke, Peter Sloot
A complex world

- Large numbers of interacting components: agents, cells, sensors, data, processors, machines, users, ...
- Emergent behavior: self-organizing and difficult to anticipate from the knowledge of the individual components’ behavior
- Collective intelligence: shared or group intelligence that results from the collaboration and competition of many individuals
A complex world: man-made and natural

- **Man-made**
 - Cities, Countries, Continents
 - Transportation and communication systems
 - Internet, Google, Wikipedia, YouTube, Twitter, FaceBook, Linked Open Data cloud, …
 - Socio-economic systems

- **Natural**
 - The immune system
 - Biological networks
 - Climate, weather, earthquakes
I4CW:

- To understand the behavior of man-made and natural systems in a complex world from the behavior of, and interactions between their components
- Deeply embedded in informatics theoretical, methodological and experimental tradition
- Strongly connected to cross disciplinary and societal links
I4CW: Overall approach

1. Collect data from system under investigation
2. Infer meaning from collected data
3. Model, simulate, predict
4. Influence/control
5. Decision support
I4CW: Starting strengths

- Systems and Network Engineering (De Laat)
 - Complex cyber infrastructure spanning continents
 - Secure, sustainable, robust, collective behavior and control

- Intelligent Systems Lab Amsterdam (De Rijke, Welling)
 - Semantic analytics for textual, visual, social, sensory data
 - Search, classify, recommend, predict at very large scale

- Section Computational Science (Sloot)
 - Theory of complex systems
 - Model and simulate complex systems
I4CW: Dots on the horizon

- Sustainable robust secure Future Internet
 - Smart Cyber Infrastructure using semantic approach
 - Protect the integrity of the human in digital world
- Self-learning interpretation of complex data streams
 - Unsupervised, real-time
 - Complement with cognitive signals
- Information theory of complex systems
 - Is multi-scale an emergent aspect of Complex Systems?
 - Can we predict and control Complex System Behavior?
Informatics for a complex world

- Unified informatics view on man-made and natural complex phenomena
- Ambitious aim to cross stack from data collection to decision support
- Addresses challenges in reliability, interpretation and modelling
Inspirational:
Rick Stevens (ANL) @ GLIF2012 last week in Chicago:
This is not simply a 3D model.
Help us build the first artificial life form.
Take Away Message: A-B-C

- A – Analytics
- B – Big Data
- C - Complexity