The Internet Still Works.
Amazing!

Cees de Laat
System & Network Engineering
University of Amsterdam
1,572,877 GB of global IP data transferred

10 Million ads displayed
347,222 Tweets
3.3 Million pieces of content shared
6.9 Million messages sent

Netflix + Youtube = more than ½ of all traffic

And Future Growth is Staggering

By 2017, mobile traffic will have grown 13X in just 5 years
In 2017, there will be 3X more connected devices than people on Earth
All digital data created reached 4 zettabytes in 2013

1,572,877 GByte/minute =
(8*1,572,877*10^9/60 bit/s)/(10*10^12 bit/s per fiber) =
21 fibers with each about 100 * 100 Gb/s channels
There is always a bigger fish.
The Internet

- Developed between 1960’s and 1980’s
- Started out as series of experiments between a few hosts
- Lots of very very rough consensuses
- Spread exploded in the 1990’s because of browsers
- Since the 1990’s it is only patching because of installed base
- It seems to work, so it is used for ever more purposes
- About 4 Billion (Miljard) people online
- Now already essential for daily life
- HOWEVER:
HOWEVER:

- Developed between 1960’s and 1980’s
 - With technical limitations of those days
- Started out as series of experiments between a few hosts
 - Everybody trusted each other, buddies
- Lots of very very rough consensuses
 - Not invented here, political power, commercial pressure
- Spread exploded in the 1990’s because of browsers
 - DNS and WWW made it usable for non scientists
- Since the 1990’s it is only patching because of installed base
 - IPv6 std in mid to end 90’s, scrambling with NAT, loc/ident
- It seems to work, so it is used for ever more purposes
 - Entertainment, newspapers, IOT, phone calls, business
- About 4 Billion (Miljard) people online
 - Ran out off addresses
- Now already essential for daily life
 - Talking with government, industry, services providers
- So?
... more users!

... more data!

Trends in Networking

... more realtime!
Trends in Networking

... more data!

Speed
Volume

Deterministic
Real-time

Scalable
Secure

... more users!
“Information technology (IT) now permeates all aspects of public, commercial, social, and personal life. Bank cards, satnav, and weather radar... IT has become completely indispensable.”

“But to guarantee the reliability and quality of constantly bigger and more complicated IT, we will need to find answers to some fundamental questions!”
Reduction of Complexity by Integration

By combining services such as telephony, television, data, and computing capacity within a single network, we can cut down on complexity, energy consumption and maintenance.

- How can we describe and analyze complex information systems effectively?
- How can we specify and measure the quality and reliability of a system?
- How can we combine various different systems?
- How can we design systems in which separate processors can co-operate efficiently via mutual network connections within a much larger whole?
- Can we design information systems that can diagnose their own malfunctions and perhaps even repair them?
- How can we specify, predict, and measure system performance as effectively as possible?

http://www.knaw.nl/Content/Internet_KNAW/publicaties/pdf/20111029.pdf
Supers & Cloud

- Science computing dwarfed by Cloud
- Sweet point between general computing (cloud) and Mission computing
- In 5 to 10 years science computers may be hard to defend
- Cloud providers
 - Economy of scale
 - 24 * 7 operations
 - Big buying power -> define what the market delivers
 - Logistics
 - but no knowledge on Science algorithms
 - ➔ Software as a Service!
 - ➔ Learn to map algorithms to cloud!

So who has the world’s largest data center?
We’ve seen a lot of huge data centers in our travels, and have identified 10 that we believe are the largest found anywhere. These data fortresses range between 400,000 and 1.1 million square feet.

Moore’s and Kryders Law

This omnipresence of IT makes us not only strong but also vulnerable.

- A virus, a hacker, or a system failure can instantly send digital shockwaves around the world.

The hardware and software that allow all our systems to operate is becoming bigger and more complex all the time, and the capacity of networks and data storage is increasing by leaps and bounds.

We will soon reach the limits of what is currently feasible and controllable.

http://www.knaw.nl/Content/Internet_KNAW/publicaties/pdf/20111029.pdf
Amazon Uses Trucks to Drive Data Faster
Cloud-computing unit, Amazon Web Services, unveils new offerings at annual conference in Las Vegas

The tractor-trailer hauls a massive storage device, dubbed Snowmobile, in the form of a 45-foot shipping container that holds 100 petabytes of data. A petabyte is about 1 million gigabytes.

The company, however, isn't promising lightning speed. Ten Snowmobiles would reduce the time it takes to move an exabyte from on-premises storage to Amazon's cloud to a little less than six months, from about 26 years using a high-speed internet connection, by the company's calculations.

LAS VEGAS—In Amazon Web Services, Amazon.com Inc. has built one of the most powerful computing networks in the world, on pace to post more than $12 billion in revenue this year.

But the retail giant on Wednesday proposed a surprising way to move data from large corporate customers' data centers to its public cloud-computing operation: by truck.

Networks can move massive amounts of data only so fast. Trucks, it turns out, can move it faster.

1 fiber does about 16 Tbit/s
⇒ 500000 s/ExaByte
⇒ One week/ExaByte
Or stick Joe and Harvey in a RV for 2 months.
Fading Trust in Internet

Dependency
Trust

Research Gap!

1980

2017
Technical developments

• ~1999: Dark Fiber, TELCO’s out of the way
 • Multi Layer services, open infrastructure, unbundling
• ~2002: High Speed Networking
 • 100’s of Gbit/s transport protocols
• ~2004: AAA and GRID
 • Cross domain resource reservation
• ~2008: Software defined Networking
 • Separation of control and forwarding plane
• ~2010: Clouds
 • Infra as a service, slices
• ~2012: Overlay networks
 • Fed4Fire, GENI, PlanetLab
• 2015: Internet of Things
 • Smart Cities, personal Health,
2006: Raj Jain, Washington univ in Saint Louis MO

Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation

IV. Top Ten Features Required in the Next Generation Internet Architecture

1. Energy Efficient Communication
2. Separation of Identity and Address
3. Location Awareness
4. Explicit Support for Client-Server Traffic and Distributed Services
5. Person-to-Person Communication
6. Security
7. Control, Management, and Data Plane separation
8. Isolation
9. Symmetric/Asymmetric Protocols
10. Quality of Service
Envisioned role of the SPG: define slice archetypes?

- Privacy
- Big Science
- DRP
- Cyber defense

SPG - A

SPG - B

Slice Creation level

Aggregate Manager
Fig. 1.2. Structure of an ExoGENI site rack for the initial deployment. Each rack has low-bandwidth IP connectivity for management and a high-bandwidth hybrid OpenFlow switch for the slice dataplanes. The site ORCA server controls L2 dataplane connections among local nodes and external circuits.
Fed4Fire
Fed4Fire

ExoGENI Rack @ GPO

Experiment 1

Bare metal

VM

VM

Data Plane

ExoGENI Rack @ RENCI

Experiment 1

Experiment 2

VM

VM

VM

Data Plane

NLR

Experiment 1 traffic

Experiment 2 traffic
Some developments: RINA

- **Recursive InterNetwork Architecture (RINA)**
 - Recursive InterNetwork Architecture (RINA) is a computer network architecture that unifies distributed computing and telecommunications.
 - RINA's fundamental principle is that computer networking is just Inter-Process Communication or IPC. RINA reconstructs the overall structure of the Internet, forming a model that comprises a single repeating layer, the DIF (Distributed IPC Facility), which is the minimal set of components required to allow distributed IPC between application processes.
 - RINA inherently supports
 - mobility, multi-homing and Quality of Service without the need for extra mechanisms,
 - provides a secure and programmable environment,
 - motivates for a more competitive marketplace,
 - and allows for a seamless adoption.
Learned from Scinet & INDIS

- 2013 - 2016
 - SDN
 - Security
 - Traffic management, policing, control
 - Hybrid – optical ring - approach to reach Tb/s

- 2017 - 2020
 - NFV
 - SDX
 - DTN @ core ➔ petabyte email network
 - Data abstractions (e.g. NDN)

Peak 1.2 Tb/s
Some developments: GENI
SKA: Depending on analysis load & physics mode they want to investigate to use SDN in real time to direct bursts of data to different compute resources and do load balancing.
NFV & Security upstream

Internet

Peer ISP's

ISP

SDX

NFV

Func-c1

Func-c3

Func-c4

Ownership/trust relation

client 1

client 2

client 3

client 4

client n
Networks of ScienceDMZ’s & SDX’s

ISP

Internet

Peer ISP’s

DMZ contains DTN

Petabyte email service 😊
Cyber security program

Research goal is to obtain the knowledge to create ICT systems that:

– model their state (situation)
– discover by observations and reasoning if and how an attack is developing and calculate the associated risks
– have the knowledge to calculate the effect of counter measures on states and their risks
– choose and execute one.

In short, we research the concept of networked computer infrastructures exhibiting SAR: Security Autonomous Response.
Context & Goal

Security Autonomous Response NETwork Research

Ameneh Deljoo (PhD):
Why create SARNET Alliances?
Model (3) autonomous SARNET behaviors to identify risk and benefits for SARNET stakeholders.

Gleb Polevoy (PD):
Determine best defense scenario against cyberattacks deploying SARNET functions (1) based on security state and KPI information (2).

Ralph Koning (PhD)
Ben de Graaff (SP):
1. Design functionalities needed to operate a SARNET using SDN/NFV
2. Deliver security state and KPI information (e.g., cost).
Ambition to put capabilities into fieldlab

- R & E Networks
- Big Data sharing
 - Fast Data Replication
- Open Flow Switch
- Data Transfer Node
- 100 Gb/s
- 10 Gb/s
- SAGE2
 - SAGE2 Server
 - Application & Service chains deployed in private and secure Internet slices
- Private & Secure Collaboration
- Re-enforcing ICT preconditions:
 Each envisaged site has similar elements

- Schiphol Group
- GENI Testbed
- Google
- Delta
- Airbus
- Boeing
- GE
- Delta
- Lightpath
- 100 Gb/s
- Digital Airport
 - AMS
 - CDG
 - ATL
- SARNET Capable Cyber-defense
- Azure
- AWS
- AIRFRANCE
- KLM
Basic operating system loop
Status SARNET Operational Level

Laboratory: ExoGeni & PRP Fieldlab with KLM & CIENA
OSA-Optical Forum Conference paper [1]

CoreFlow
Berkeley Internship 2016
SC16 INDIS workshop paper [2]

ToDO ‘18

Learn
Detect

Control loop

Decide

Respond

SC16 demo plus poster
Salt Lake City (UT)
IEEE Sec-Virtnet 2016 paper [3]

SC15 demo plus poster
Austin (TX)

SC16 DEMO SARNET Operational Level

SARNET demo
Control loop delay:

By using SDN and containerized NFV, the SARNET agent can resolve network and application-level attacks.
From this screen, you can choose your attack and see the defensive response.

Traffic layers
Toggle the visibility of the traffic layers:
Physical links Traffic flows

Choose your attack
Start a Distributed Denial of Service attack from all upstream ISP networks:
UDP DDoS
Start a specific attack originating from one of the upstream ISP networks:
Origin: e2-edge2.as4000
CPU utilization Password attack
Normal operation

Object information
e2.edge2.as400

Edge domains flood the network with UDP traffic
SC16 DEMO SARNET Operational Level

Network metrics
Bandwidth:
Utilized: 867Mc/s

Flows:
TCP: 279
UDP: 691

Application metrics
CPU:
Webshop 1: 38%
Webshop 2: 92%

Successful transactions:
Webshop 1: 95
Webshop 2: 11

Login attempts:
Successful: 24
Failed: 12

Control loop

DETECT
Revenue below threshold
Abnormal UDP flow detected

ANALYZE
DDoS domains: AS300, AS400, AS500

DECIDE
Filter UDP traffic at edge domains

RESPOND

Attacking domains are identified
Flow filters are installed at the network edge.
SC16 DEMO SARNET Operational Level

SARNET demo
Control loop delay:

By using SDN and containerized NFV, the SARNET agent can receive network and application level attacks.
From this screen, you can choose your attack and see the defensive response.

Traffic layers
Toggle the visibility of the traffic layers:
Physical links Traffic flows

Choose your attack
Start a Distributed Denial of Service attack from all upstream ISP networks:
UDP DDoS
Start a specific attack originating from one of the upstream ISP networks:
Origin: e2.edge2.as400

CPU utilization Password attack

Object information

Service is restored
Control loop

Detection phase: Detect, Classify, Analyze
Decision phase: Risk, Decide
Response phase: Respond, Adjust, Measure
Learn phase: Learn (with input form other phases)
Agent Based Modelling Framework

In our model, we refer to four layers of components:

- **the signal layer**— describes *acts*, side-effects and failures showing outcomes of actions in a topology.
- **the action layer**— *actions*: performances that bring a certain result,
- **the intentional layer**— *intentions*: commitments to actions, or to build up intentions,
- **the motivational layer**— *motives*: events triggering the creation of intentions.
Simplified Eduroam case at signalling layer

Petri net of EduRoam Case (first step)
Describing Intentions, Motivations and Actions

Petri net of EduRoam Case
The VMs that are live-migrated run an iterative search-refine-search workflow against data stored in different databases at the various locations. A user in San Diego gets hitless rendering of search progress as VMs spin around.
Experiment outcomes
Note, this was in 2005

We have demonstrated seamless, live migration of VMs over MAN/WAN

For this, we have realized a network service that
- Exhibits predictable behavior; tracks endpoints
- Flex bandwidth upon request by credited applications
- Doesn’t require peak provisioning of network resources

Pipelining bounds the downtime in spite of high RTTs
- San Diego – Amsterdam, 1GE, RTT = 200 msec, downtime <= 1 sec
- Back to back, 1GE, RTT = 0.2-0.5 msec, downtime = ~0.2 sec*

*Clark et al. NSDI 05 paper. Different workloads

VM + Lightpaths across MAN/WAN are deemed a powerful and general alternative to RPC, GRAM approaches

We believe it’s a representative instance of active cpu+data+net orchestration
Secure Policy Enforced Data Processing

- Bringing data and processing software from competing organisations together for common goal
- Docker with encryption, policy engine, certs/keys, blockchain and secure networking
- Data Docker (virtual encrypted hard drive)
- Compute Docker (protected application, signed algorithms)
- Visualization Docker (to visualize output)
I want to

“Show Big Bug Bunny in 4K on my Tiled Display using green Infrastructure”

• Big Bugs Bunny can be on multiple servers on the Internet.
• Movie may need processing / recoding to get to 4K for Tiled Display.
• Needs deterministic Green infrastructure for Quality of Experience.
• Consumer / Scientist does not want to know the underlying details.

➤ His refrigerator also just works!
Is Super-facility playing here?
The Big Data Challenge

Data
a.o. from ESFRI’s

Knowledge to act

Wisdom

Information

ICT to enable Science

OWL

Workflows
Schedulers to act

e-IRG

XML, RDF, rSpec, SNMP, Java based, etc.

Doing Science

GRID/CLOUD

Doing Science

GRID/CLOUD
The Big Data Challenge

Data a.o. from ESFRI’s

Information

Knowledge

Wisdom

Doing Science

ICT to enable Science

e-IRG

Workflows

Schedulers

Scientists live here!

Science App Store?

MAGIC DATA CARPET

curation - description - trust - security - policy – integrity

Data a.o. from ESFRI’s

XML, RDF, rSpec, SNMP, Java based, etc.

OWL

Information

Doing Science

ICT to enable Science

Scientists live here!

Science App Store?

MAGIC DATA CARPET

curation - description - trust - security - policy – integrity

Data a.o. from ESFRI’s

XML, RDF, rSpec, SNMP, Java based, etc.

OWL

Information
TimeLine

- Sustainable Internet
- Cognitive Nets and clouds + Machine Learning
- Virtualized Internet
- Good Old Trucking

“I Want” Internet 3.0

2020

I retire

2040
What has AI to do with the Dutch National Science quiz 2013?

- Q13: For an illness that 1 out of 1000 people suffer, a 99% accurate test is developed. You are tested with that method and found bearer of the illness. What is the probability that you really have the specific illness?

- Choose: [A: 99%, B: 50%, C: 9%]

- Answer C: because you are in the set of true and false positives!

- Suppose the accuracy of PRISM, Tempora, Xkeyscore, etc. is 99% and 1 out of 100000 of the subjects are indeed terrorists

- False positives among 100k … ~1000!

Areas of research

• Each domain its own AI on networks.
 – Multiple AI’s fighting on my behalf?

• A-B-C slide
 – Where makes what AI sense?

• Many layers of complexity and abstraction.
 – Can AI help to understand and debug?
 – Can it explicitly understand? Reveal a model?

• Probabilities are badly understood in AI
 – How to deal with false positives?
 – Ethical issues?
 – Trust issues?
 – Intention issues?
Critical notes

• We created complexity
• Huge number of actors (devices)
• Millions of lines of codes
• We have shrinking trust in the Internet
• Let’s throw in another hundred thousand lines of code! Good luck…
• Complexity encapsulation
• Do we have enough information for RL - ML?
• Do we understand what the Machine needs to learn?
The constant factor in our field is Change!

The 50 years it took Physicists to find one particle, the Higgs, we came from:
Assembler, Fortran, Unix, c, SmallTalk, DECnet, TCP/IP, c++, Internet, WWW, Semantic Web, Photonic networks, Google, grid, cloud, Data^3, App, AI

to:
DDOS attacks destroying Banks and Bitcoins.

Conclusion:
Need for Safe, Smart, Resilient, Sustainable Infrastructure.