Distributed Big Data Assets Sharing & Processing

Trusted Data Processing in Untrusted Environments.

C. de Laat (moderator), L. Gommans, R. Wilson

System & Network Engineering, University of Amsterdam
AirFrance KLM
CIENA

INTERNET® 2017 global SUMMIT
April 23-26
Washington DC
Fading Trust in Internet

Dependency
Trust

Research Gap!

1980

2017
Main problem statement

- Organizations that normally compete have to bring data together to achieve a common goal!
- The shared data may be used for that goal but not for any other!
- Data may have to be processed in untrusted data centers.
 - How to enforce that using modern Cyber Infrastructure?
 - How to organize such alliances?
 - How to translate from strategic via tactical to operational level?
 - What are the different fundamental data infrastructure models to consider?
Networks of ScienceDMZ’s & SDX’s

Internet
Peer ISP’s

Supercomputing centers (NCSA, ANL, LBNL)

ISP
NFV

SDN

ISP
Peer ISP’s

SDX
NFV

Func-c1
Func-c3

Func-c4

DMZ

DMZ

client 1
client 2
client 3
client 4
client n

Petabyte email service 😊
contains DTN

ISP

SDX

SDX

SDX

ISP

ISP
Secure Policy Enforced Data Processing

- Bringing data and processing software from competing organisations together for common goal
- Docker with encryption, policy engine, certs/keys, blockchain and secure networking
- Data Docker (virtual encrypted hard drive)
- Compute Docker (protected application, signed algorithms)
- Visualization Docker (to visualize output)

Untrusted Unsecure Cloud or SuperCenter

Secure Virtual PC

- Data-1
- Comp
- Data-2
- Viz

Org 1
Org 2
Org 3
Org 4
Ambition to put capabilities into fieldlab

Re-enforcing ICT preconditions:
Each envisaged site has similar elements
Program:
15h00 Cees de Laat, University of Amsterdam
 Trusted Data Processing in Untrusted Environments.
15h05 Leon Gommans, Air France KLM
 Trusted Big Data Sharing.
15h25 Rodney Wilson
 Programmable Supernetworks, Science DMZ based Networking.
15h30 Panel of stakeholders Flash talks (~3 min each):
 Inder Monga - ESnet - Data Science Driving Discovery.
 Matt Zekauskas - Internet2 - Thoughts on Internet2 and Trusted Large Data Transfer.
 Jerry Sobieski - NORDUnet - Issues of Big Data Sharing in a Global Science Collaboration.
 Adam Slagell – NCSA - What are we trusting?
15h45 Panel discussion moderated by Cees de Laat
16h00 End of session.
TRUSTED BIG DATA ASSET SHARING

Leon Gommans
Science Officer, Air France KLM Group IT Technology Office
Guest Researcher, University of Amsterdam

System and Network Engineering
• Sharing Big Data Assets and Trust
• Secure Digital Market Place concept
• Infrastructure model research
• Research project involvement.
Sharing Big Data Assets within a group needs

- Clearly defined and agreed common **benefit** defining the group’s identity

- **Common group rules** governing use, access and benefit sharing.

- **Organizing trust** amongst group members as **means to reduce risk**

- Infrastructure supporting **implementation of trust** whilst ensuring **autonomy**
Trust as a means to reduce risk

Risk:
- Compliancy
- Liability
- Disclosure
- Ownership
- Intellectual Property
- Additional oversight
- etc., etc...

Means:
- Trust and power are both means capable of reducing risk

How to organize trust and power? -> The Secure Digital Market Place concept
The Secure Digital Marketplace: A high level framework

- National Law & Regulations
- Market rules
- Member Admission
- Secure Digital Marketplace Membership Organization
- Algorithm supplier(s)
- Data supplier(s)
- Future Internet Capabilities
- Agreement
- Deployment Models
- Deployment Specification
- Registry
- Dispute Resolution
- Parameterization & authorizations
- Customer(s)
- Accounting & Auditing

- National Law & Regulations
- Market rules
- Member Admission
- Secure Digital Marketplace Membership Organization
- Algorithm supplier(s)
- Data supplier(s)
- Future Internet Capabilities
- Agreement
- Deployment Models
- Deployment Specification
- Registry
- Dispute Resolution
- Parameterization & authorizations
- Customer(s)
- Accounting & Auditing
Traditional Model raising concerns

Domain D

Analyses

Domain = Autonomous Organization with own administration and enforcement

Domain A

Domain B

Domain C

System and Network Engineering
Alternative: bring processing to the data
An innovative deployment model: separate processing from data

100 Gb/s Lightpath

Data Transfer Node enables utilization of available high network bandwidth across distance

DTN is part of Science DMZ concept from

©“2016”Internet2
Secure Digital Market Place deployment model research testbed

Domain A

Domain B

Domain C
Global Digital Market Place Testbed via the GLIF?
Research goal: Explore value of academic network research capabilities that enable innovative ways & models to share big data assets.
Big Data Sharing use cases placed in airline context

Global Scale

National Scale

City / regional Scale

Campus / Enterprise Scale

Aircraft Component Health Monitoring (Big) Data
NWO CIMPLEO project
4.5 FTE

Cargo Logistics Data
NLIP iShare project

Cybersecurity Big Data
NWO COMMIT/SARNET project
3.5 FTE
Thank you!

NL Research funded by NWO, STW, COMMIT, Commit2Data, NLIP in collaboration with Internet2, ESnet, PRP, NCSA, ANL, ICAIR,

University of Amsterdam: Cees de Laat, Tom van Engers, Paola Grosso, Ameneh Deljoo, Gleb Polevoy, Ralph Koning, Ben de Graaff, Lukasz Makovski
Ciena: Steve Alexander, Rodney Wilson, Marc Lyonais, Lance Williford
SURFnet: Erik Huizer, Gerben van Malenstijn
SURFsara: Anwar Osseyran, Axel Berg
Leiden University: Thomas Baeck, Jeroen van der Leijé
TNO: Rob Meijer, Frank Franssen, Jan Burgmeijer, Jan Wester
CWI: Marc Stevens
Air France KLM: Edwin Borst, Nicolas Forgues, Vincent Euzeby, Bart Krol, Wouter Kalfsbeek
NLIP / iShare Michiel Haarman, Vincent Janssen, Gijs Burgers
Programmable Supernetworks, Science DMZ based Networking

Rodney G. Wilson
Sr. Director, External Research Programs
CTO - Ciena
Issues in moving large dataflows
We have issues with trust & security
Tomorrow’s problems today
Putting theory into practice...

- Internet
- Peer ISP’s
- Super centers (NCSA, ANL, LBNL)

Interesting to Industry
Field lab

To SURFnet Amsterdam

Proposed extension
CENI “client resource”

NFV Engines

DMZ vs. lockdown

CENI Ottawa System Specifications
- 14 Dell Servers
- 180 Physical Cores -> approx. 330 Virtual Core Machines Running Linux RedHAT 6.0
- Up to ~ 80 VMs (using 4 Cores each.)
- 608 GB of Physical RAM -> approx. 1.2TB VRAM
- 6 TB of HD-> more than 12TB Virtual Disk Capacity
- 100GE Upload Capacity, first of its kind for GENI
- 20GE in Management Ethernets ports (approx 48 ports) via 5142 and 5150
- All DC powered (approx. 100A)
- 175 Public IP addresses on CANARIE Network

8700 Packet Wave Platform
- 4 Slot with 560G of L2 Capacity
- 4x40G (2 PSLM-200-2)
- 2x100G (1 PSLM-200-2)
- 20x10GE (1 PSLM-200-20)
Field Lab Architecture
Rapid increase in data rates and number of data sources

- Complexity of scientific discovery increasing
- Data volumes are increasing > Moore’s Law
- Fewer large facilities, but global scientific population

Automated coupling of compute and storage with networks critical to increasing science productivity
LCLS to NERSC – ECP ExaFEL project

Providing atomic scale vision to researchers at beamline in < 10min

LCLS

- Event Timing
- LCLS-II XFEL: aggregate detector data, EPICS data, beamline data

DAQ Readout Nodes
- Event Builders
- FFB Layer (nVRAM)
- IB

10 GB/s - 1TB/s

Online System
(1 instance per experimental hall, 2 total)

1 TB/s

Data Reduction Pipeline
(1 instance per instrument, 8 total)

NERSC Router

ESNET

- Software ETH Routers
- Open Daylight Controller

Exascale HPC

- Burst Buffer nVRAM: Streaming Analysis
- HPC workflow: 1) psana for data marshalling 2) C++ Parallel-STL & Halide for Image processing 3) SSIO services store & organize images kernels

HPC System with SDN & Burst Buffer
Supporting
(1) file-based transfer path
(2) stream-based data transfer path

NGF / Lustre: Offline from HDF/KTC files.
Superfacility: Integrated network of experimental and computational facilities and expertise

A single interconnected “facility” where data is acquired, stored, analyzed and served

Experimental Facilities

Computing and Data Facilities

User Community

Expertise

Methods, models, analytics, and software

Sequencers

Light Sources

Telescopes

Particle Detectors

Microscopes

ESnet

Applied Math

VISIt
Thoughts on Internet2 – Big Data Panel

Matt Zekauskas
matt@internet2.edu
Thoughts on Internet2 and Trusted Large Data Transfer

• Internet2 builds a network to support these sort of big data transfers, connecting our regional networks, schools and service providers
• We can build custom paths, dynamically, to support communication among trusted partners
• The Internet2 community has also worked in trust and identity, creating the inCommon trust fabric, and the TIER program. Leverage this to help create bilateral trust between entities
• Internet2 is involved with the Pacific Research Platform partners toward creating a national research platform, including “standards” for data transfer nodes – an opportunity to improve trusted big data flows
 – A way to collaboratively negotiate and articulate trust and thus access
 – Blend policy and social to reduce friction to discover and negotiate
• Increase transparency – telemetry – to foster trust?
Issues of Big Data Sharing in a Global Science Collaboration

Is it networking issue? Or is it a security issue?

Jerry Sobieski
Chief Research Officer
NORDUnet

Presented to the Internet2 Global Summit 2017
Sharing large data assets

• Redistributing and correlating large data has two major challenges:
 – Moving large data sets across large physical distances -> The classic network capacity/performance issue (This assumes the two locations are trusted)
 – Secured access to information – once outside a secure perimeter, there is no longer effective control of access to that info. (i.e. how do we “trust” remote locations?)

• Moving the algorithm to the data:
 – Useful where the distributed data sets are already integrated in a single “location”
 – Does not solve the problem of gathering distributed data sets for correlation or other integrated analysis algorithms,

• Exposes the algorithm to potential security breaches
 – Proprietary algorithms may be compromised
Security Issues in data sharing

- **Jurisdictional restrictions**
 - (E.g. national borders)
- **Proprietary restrictions**
 - e.g. business policy, IP algorithms
- **Privacy restrictions**
 - E.g. personal financial info, medical data, etc.
- **Trust – but verify**
 - Verifiably compliance – can we authorize each access of information? Or limit the use to a single trusted agent?
- **Provinence – how do we handle provinence / reproducibility**
 - where data access is secured or constrained?
The virtualized world

• “Virtualization” poses important challenges
 – The physical location of information is no longer determined
 – What constitutes a secure (trusted) perimeter in virtual service environments?

• “Cloud” services have not solved the security problem:
 – We can store encrypted data
 – We can transport encrypted data
 – We cannot [yet?] compute on encrypted data (homomorphic computing)
 – This exposes data in the clear
Key open questions:

• Can we *verifiably* secure computational processes short of physical secure perimeters?
 – Security thru obscurity? Distributed computation, interchangable algorithmic components,
 – Who verifies and signs “trusted” code – can we trust them? -> trusted security services who’s business value proposition is their reliability in terms of security analysis of components.
 – Homomorphic (encrypted) computing?

• We can authorize access to information, but having authorized access to some agent, we lose control over the information because that info is now in the clear...
 – Can we encrypt and “sign” data in such a way that only authorized agent(s) can interpret the data and make use of it?
What are we trusting?

- Trusting not to re-share?
- Trusting to act competently?
- Trusting our common incentives and aligned interests?
- Trusting algorithms and expertise?
 - Requires deep understanding of the problem, right semantics for policies
 - Does not often generalize
What needs to be shared?

• Analysis can happen at many layers
 • REN-ISAC members share derived data, not raw
• Can we do non-consumptive analysis?
 • Depends on the problem space
• Sharing publicly very hard
 • Understand the limits of anonymization
• Start simple
 • One well-defined problem